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1/3/12. Find the smallest positive integer with the property that it has divisors ending with every 
decimal digit; i.e., divisors ending in 0, 1, 2, ..., 9 

Solution 1 by Rishi Gupta (8/CA): Let us first look at the prime factors of the answer.  There 
must be a 5, because any number ending in 5 is divisible by 5.  There must also be a 2, for the 

×same reason. Therefore, so far, we have factors: 2 5 = 10 , and the numbers 0, 1, 2, and 5 are 
covered. 

We have the numbers 3, 4, 6, 7, 8, and 9 left. 

If we can find multiples of the three odd numbers (3, 7, and 9), then the even numbers are covered 
because of the multiple of 2 ( 2 3 = 6 , 2 × 7 = 14 , 2 × 9 = 18 ). Therefore all we need to× 
worry about is 3, 7, and 9. 

One solution (which may not be smallest) would be to use the LCM of 3, 7, and 9, which is 63. 
So the answer would have to be less than or equal to 63 × 10 . 

Let’s see if any of the numbers ending in 7 have factors ending in 3 and 9.  Seven and 17 are 
primes, but 27 has 3 and 9 as factors.  So now 27 × 10 = 270 is a smaller solution. Any other 
possible solution below 27 would have to use a multiple of 7 or 17.  The only candidates are 14 
and 21, neither of which has a factor of 9 or 19. 

Verification: 270 is divisible by 10, 1, 2, 3, 54, 5, 6, 27, 18, and 9. 

Therefore the solution is 27 × 10 = 270. 

Solution 2 by Matthew Pelc (12/PA): Solution 270.

Call the desired integer N. All positive integers have 1 as divisor, so it is immediately dealt with.

The only way a divisor of N can end in zero is for it to be a multiple of 10, thus 2 and 5 must be

prime factors of N, and N is a multiple of 10. Divisors ending in 5 would have to be multiples of

5, but we already have taken care of 5.  So 2 5  covers 0, 1, 2, and 5.
× 

Any multiplication with 5 just produces another number ending in 0 or 5, so 5 is not really a con­
sideration in determining the remaining needed factors. Any divisor ending with 7 automatically 
gives us another ending with 4 (because 2 is already a factor of N), and similarly any ending with 
9 gives us another factor ending with 8.  The smallest and most economical solution for 7 and 9 



would be 27 = 3
3 

= 3 9 . The 4 (27 × 2 = 54 ) and 8 (9 × 2 = 18 ) are taken care of simulta­× 
neously.  Notice 3 and 6 are covered since 3 is a factor and 6 = 2 × 3 . So 2 × 5 × 27 = 270  is 
the smallest positive integer with divisors ending in each decimal digit. If we are not sure, we can 
check each multiple of 10 up to 270; but notice only 70, 140, 170 and 210 have divisors ending 
with 7. Of these only 210 has a divisor ending in 3, but 210 has no divisor ending in 8.  27 is the 
best because it contains 3 and 9, and with 2 it takes care of 3, 4, 6, 7, and 9 all at once. 

Solution N = 270.


Solution 3 by Mike Church (12/PA): The smallest such integer is 270.

Proof: First, since the desired integer has a divisor ending in 0, it is clear that this integer must be

divisible by 10.  Hence we can eliminate all integers not divisible by 10.


That our integer is divisible by an integer ending in 7 implies it is divisible by an integer among

the set {7, 17, ...}. Hence, we can remove all other integers from our consideration. Thus the five

smallest candidates for our desired integer are:


70, 140, 170, 210, 270 

Next, it is desired that our integer have a factor ending with 3, so it must be divisible by one 
among 3, 13, 23, and so on. Thus we can eliminate 70, 140, and 170, and hence there remain 

210 and 270 

The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210.  As this set 
lacks elements whose last digits are 8 or 9, 210 can also be disqualified. 

Hence, all integers less than 270 have been disqualified.  Now evaluate the divisors of 270: 
1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, and 270. 

On inspection, 270 indeed does have the desired property. 

Editor’s Comment:  We are grateful to Professor Bruce Reznick of the University of Illinois for 
this nice problem, which he first published (via Martin Gardner) in “Science Fiction Puzzle Tales” 
in the early 1980’s. 

2/3/12. Assume that the irreducible fractions between 0 and 1, with denominators at most 99, 
17

are listed in ascending order. Determine which two fractions are adjacent to ------ in this listing. 
76 

Editor’s comment: For a discussion of continued fractions and Farey series see the Editor’s 
Comments following the solutions. 



Solution 1 by Christopher Lyons (12/CA): 
17

We consider the continued fraction expansion of ------ :
76 

17 1 ; , ,------ = 0 + ---------------------- = [0  4 2 8]
76 14 + -----------­

12 ---+ 
8 

To find the fraction that is directly below 17 ⁄ 76 , we must realize that changing the 8 in the 
expansion to a higher number would, in fact, make the overall number smaller. So we must figure 
out how much to add to the 8 in order to turn the overall fraction into one directly below it on the 
list. Let us write the number below 17 ⁄ 76 as having the continued fraction expansion 

,x 0 4  2  8  1 
a 
---+, ,;= 

where a is a positive real number. When we condense x into its common fractional form, we have 
17a 2+ 

x = ------------------ .
76a 9+ 

90
We know the denominator is less than or equal to 99, so a ≤ ------ . We also know that both 17a and

76 
76a must be positive integers. But since 17 and 76 are coprime, a must be an integer itself. The 
only positive integer less than 90 ⁄ 76 is 1, so a = 1 , and 

19 
x = ------ .

85 

To find the fraction directly above 17 ⁄ 76 , we must subtract some amount from the 8. We call 
this larger fraction y, and write its continued fraction expansion as 

,y 0  4 2 8  1 
b 
---–, ,;= 

where b is a positive real number. When we condense y into its traditional rational form, we find 
17b 2– 

y = ------------------ .
76b 9– 

108
Again, we know the denominator cannot exceed 99, so b ≤ --------- . Once more, b must be an integer

76 

due to the lack of common factors between 17 and 76. Therefore, b = 1 , and 

15 
y = ------ .

67 
So 

19 17 15 ------ < ------ < ------ .
85 76 67 



Solution 2 by Lisa Leung (10/MD):  The irreducible fractions between 0 and 1 with denomina­
tors at most 99, listed in ascending order, describes a Farey series of order 99. 

Two basic theorems that describe characteristics of successive terms in a Farey series Fn of order 
n are: 

h h′ 
(1) If --- and ---- are two successive terms of the Farey series, then kh′ – hk′ = 1 .

k k′ 
h h′ 

(2) If --- and ---- are two successive terms of the Farey series, then k k′ > n .+
k k′ 

⁄By using theorem (1) with h k  set to 17 ⁄ 76 where h is 17 and k is 76, 

76h′ – 17k′ = 1 . 

( (This is similar to solving 76h′ ≡ 1 mod 17) . This is solved when h′ ≡ 15 mod 17) . Substituting


15 into the first equation yields k′ = 67 , and h′ ⁄ k′ = 15 ⁄ 67 .

Thus


17 15 ------ < ------ .
76 67 

Next, by using theorem (1), but with h′ ⁄ k′ as 17 ⁄ 76 , 

17k – 76h = 1 . 

( (This is similar to solving 17k ≡ 1 mod 76) . This is satisfied when k ≡ 9 mod 76) . However, 

when k = 9, it contradicts theorem (2). Thus k ≠ 9 . When k = 85, it satisfies both theorems. 

h 19When substituted into the equation, --- = ------ .
k 85


19 17 15

Thus, ------ < ------ < ------ .

85 76 67 

19 17 15
Solution 3 by Jason Chiu (12/WY): Answer: ------ < ------ < ------ .

85 76 67 

h h′ 
Theorem. If --- and ---- are two successive terms of the Farey series Fn, then kh′ – hk′ = 1 .

k k′ 

For several proofs of this well-known theorem, see G.H. Hardy and E.M. Wright, An Introduction 
to the Theory of Numbers, Fifth Edition, Oxford University Press, London (1979). 

a a′ 
Let --- and ---- respectively denote the fractions left-adjacent and right-adjacent to 17 ⁄ 76 in F99.

b b′ 
By the contrapositive of the Theorem, 17b – 76a = 1 and 17b′ – 76a′ = 1– . To solve the first 
Diophantine equation, apply Euclid’s Algorithm to obtain 

76 = 4 ⋅ 17 8+ , 



17 = 2 ⋅ 8 1+ , 

8 = 1 ⋅ 8 0+ . 
Backing up through these equations gives 

1 = 17 – 2 ⋅ 8 = 17 – 2 76 – 4 ⋅ 17) = 9 ⋅ 17 – 2 ⋅ 76 ,( 

yielding the solution (a b) = (2 9)	 to the equation 17b – 76a = 1 . An alternate way to obtain, , 
17

this solution is to compute the convergents to the continued fraction expansion of ------ . The con­
76 

vergents in this expansion are 
P0 P1 1 1 P2 1 2 P3 1 17 ------ = 0 , ------ = 0 ---+ = --- , ------ = 0 + ------------ = --- , ------ = 0 + ---------------------- = -----­
Q0 Q1 4 4 Q2 1 9 Q3 1 764 ---+	 4 + -----------­

2	 12 ---+ 
8 

P2 2 ------ = --- also gives the solution (a b) = (2 9) to the equation 17b – 76a = 1 .
Q2 9	

, , 

Since gcd(17,76) = 1, the general solution of the equation 17b – 76a = 1  is a = 2 17t ,+ 

b = 9 76t . For any solution (a b) to 17b – 76a = 1 ,+	 ,

17 a 1


k = ------ ---– = --------­
76 b 76b 

, ,so that choosing the largest value of b minimizes k. Hence the ordered pair (a b) = (19 85) 
gives the smallest value of k and 19 ⁄ 85 is left adjacent to 17 ⁄ 76 . 

Similarly, the general solution to 17b′ – 76a′ = 1– is a′ = 2– + 17t , b′ = 9– + 76t so the 

ordered pair (a′, b′) = (15 67) gives the smallest value, 
a′ 17 1

k′ = ---- – ------ = ----------­
b′ 76 76b′ 

and 15 ⁄ 67 is right-adjacent to 17 ⁄ 76 . 

Editor’s Comment:  A similar problem appeared in the January 1999 issue of Mathematical 
Digest, an excellent South African mathematical journal for high school students. This problem 
does allow for computer solutions; we welcome them, but commend such solutions only if they 
are based on a clever algorithm and deal with accuracy. We thank our problem editor, Dr. George 
Berzsenyi, for this problem. 

This interesting problem gives us an opportunity to expand on two interesting mathematical top­
ics, continued fractions and Farey series. Continued fractions were discussed in the Solutions to 
Round 1 of Year 10, available on the USAMTS web site. 

h
By a Farey series Fn of order n, we mean the set of all fractions --- with 0 ≤ ≤h k , gcd(h,k) = 1,

k


k n , and arranged in ascending order of magnitude. For example, F5  is
1 ≤ ≤  



--- --- --- --- --- --- --- --- ---

2 

0 1 1 1 2 1 3 2 3 4 1 ---, , , , , , , , , , -­-
1 5 4 3 5 2 5 3 4 5 1 

These series have remarkable properties, some of which are mentioned in the solutions above. I 
restate two of the theorems here so you might easily confirm them for this example: 

h h′ 
(1) If --- and ---- are two successive terms of the Farey series, then kh′ – hk′ = 1 .

k k′

h h′


(2) If --- and ---- are two successive terms of the Farey series, then k k′ > n .+
k k′ 

Proofs of these and other properties are given in G.H. Hardy and E.M. Wright, An Introduction to 
the Theory of Numbers, Fifth Edition, Oxford University Press, London (1979). 

3/3/12. Let p x
2 

r2 r3 r4 ( ) = x 
2 

2– . Determine( ) = x 
5

+ x + 1 have roots r1, , , , r5 . Let q x 


the product q r1 ( )q r3 ( )q r5
( )q r2 ( )q r4 ( ) . 

2Solution 1 by Sofia Leibman (8/OH): We can write the polynomial x 
5

+ x + 1 in the form 

– – –(x r1 )(x r2 )…(x r5 ) . 

2( )q r2 ( ) = (r1 2– )(r2 2– )…(r5 2– ) .The product q r1 ( )…q r5
2 2 

ri 2– = ( 2 – ri)(– 2 – ri) . 

So the product can be written as 

( 2 – r1 )( 2 – r2 )…( 2 – r5 )(– 2 – r1 )(– 2 – r2 )…(– 2 – r5 ) 

p 2( ) p 2–( )= 
5 2 5 2 

= [( 2) + ( 2) + 1] ⋅ [(– 2) + (– 2) + 1] 
= 23– 

The solution is -23. 

Solution 2 by Sarah Emerson (12/WA): 
Any polynomial of degree n with leading coefficient 1 can be factored as 

– – – –(x z1 )(x z2 )…(x z )(x z )n 1– n 

where z1, , …z  are the roots of the polynomial, are complex numbers of the form a bi  , (a+z2 n 

and b are real numbers and either a or b, or both, can be zero). 

Therefore, p x
2( ) = x 

5
+ x + 1 can be expressed as 

( ) = (x r1 )(x r2 )(x r3 )(x r4 )(x r5 ) .p x – – – – – 

( ) = x 
2 

2– has two roots, s1 and s2, so q x – –Also, q x ( ) = (x s1 )(x s2 ) . 

Then q r1( ) = (r1 – s1 )(r1 – s2 ) and 



q r ( )q r ( )q r( )q r ( )q r4 ( ) = 1 2 3 5

= (r – s1 )(r – s2 )(r – s1 )(r – s2 )(r – s1 )(r – s2 )(r – s1 )(r – s2 )(r – s1 )(r – s2 )1 1 2 2 3 3 4 4 5 5 

= (s – r1 )(s – r2 )(s – r3 )(s – r4 )(s – r5 )(s – r1 )(s – r2 )(s – r3 )(s – r4 )(s – r5 )1 1 1 1 1 2 2 2 2 2 

since we changed an even number of signs and reordered terms.  This is equivalent to 
p s1 ( ) .( ) p s2

Factoring q x( ) 	= x 
2

2 – = (x – 2)(x + 2)  gives the two roots of q(x): s1 = 2 and 

=	 – 2 .s2 

Plug these roots of q(x) into the original equation for p(x). 

( )q r ( )q r ( ) = p( 2) p(– 2)q r ( )q r ( )q r1 2 3 4 5

5 2 5 2 
= [( 2) + ( 2) + 1] ⋅ [(– 2) + (– 2) + 1] 
= 23 – . 

This method will work with any two polynomials; however, if both polynomials are of orders that 
( ))  will be the negative of g(roots of f xare odd numbers, the product of f (roots of g x ( )) 

because the odd number of negative signs will not all cancel out. 

Editor’s Comment:  We are thankful to Professor Rob Hochberg of the University of Connecti­
cut for this interesting problem. 

4/3/12. Assume that each member of the sequence 〈 ◊i 
∞ 

is either a + or a – sign. Deter-〉i = 1


mine the appropriate sequence of + and – signs so that


.2 6 1 6 2 6 3…◊◊◊= 

Also determine what sequence of signs is necessary if the sixes in the nested roots are 
replaced by sevens. List all integers that work in the place of sixes and the sequences of signs 
that are needed with them. 

Solution by Ho Seung (Paul) Ryu (9/KS): 

• 	 Firstly, we notice that 2 = 6  2  – . So, if we replace the 2 on the right side with the identical 

expression 6 2  in infinite number of times, we will have obtained –


2 = 6 – 6 – 6 – 6 – … . So the sequence of signs for 6 is simply -,-,-,-,... .


• 	 For number 7, 2 = 7  3  – , which is of little help, but 3 = 7  2  + , so 2 = 7 – 7  2  + . 

So, by replacing 2 on the right side, we get 2 = 7 – 7 + 7 – 7 + … , just alternating 



signs -,+,-,+, ... . 
• 	 For the number 8, we will prove that 8 cannot be used.  That is for a simple reason, that 

2	 = 8  4  – , but no sequence of radicals and 8s can be larger than 8 + 8 + … . This quan­
2

tity is given by x = 8 + 8 + … = 8 + x . x 
2 

= 8 + x and thus x – x 8  –  = 0.  

1  8  –1  ± 1 – 4 ⋅ ⋅ ( )  1 ± 33  
x	 = ------------------------------------------------ = ------------------- . This is less than 4, so 8 does not work in the problem. 

2	 2 
•	 No numbers greater than 8 satisfy the conditions set forth in the previous statement, so now we 

can investigate numbers less than 6. 

• 	 Now for 5, 2 = 5  1  – , 1 = 5  4  – , 4 = 5 + 11 , 11 = 5 116 + .  The numbers just 
never cease to increase, so we can never have a working sequence of signs. 

• 	 For 4, 2 = 4  0  – , and we are stuck right away. 

•	 For 3, 2 = 3  1  + , 1 = 3  2  – , and so 2 = 3 + 3 – 3 + 3 – … . Thus the sequence of 
signs is +,-,+,-, ... . . 

• 	 As for 2, 2 = 2  2  + , so 2 = 2 + 2 + …  and we have sequence +,+,+,+, ... . 

•	 Lastly, for 1, 2 = 1  3  + , 3 = 1  8  + , 8 = 
1 does not work. 

Thus for the number six, the required sequence of signs is just a string of minus signs

1 + 

M 

, and we just keep increasing. Therefor,63  

-,-,-,-, ... . 
The numbers that work in place of six, and the sequence of signs needed are: 

2: 	All plus signs +,+,+,+, ... . 
3: 	Alternating plus/minus +,-,+,-, ... . 
7: 	Alternating minus/plus -,+,-,+, ... . 

Editor’s comment:  This wonderful problem was proposed by Dr. Rodrigo Gomez of NSA. 

5/3/12. Three isosceles right triangles are 
erected from the larger side of a rectan­
gle into the interior of the rectangle, as 
shown on the right, where M is the mid­
point of that side. Five circles are 
inscribed tangent to some of the sides 
and to one another as shown. One of the 
circles touches the vertex of the largest 
triangle. 

Find the ratios among the radii of the

five circles.




Solution by Lisa Leung (10/MD): Since M
the triangles are isosceles right triangles 
that are erected from the larger side of a 
rectangle, the two circles marked as a are 
congruent and the two circles marked as c 
are congruent. 

Without loss of generality, let the length of 
the rectangle be 1 unit, and ra, rb, and rc be 
the radius of circle a, b and c respectively. 

As shown in Figure 2,

a a 

b 

c c 

Figure 1.

r +
a 

r = a 

1
--- =

2


(1 +


2⎞ 1


(1) 

From the base of figure 3,

 (2) 

From the width of the rectangle in Figure 3,

ra 2 1 
4 
---= 

1/2 

ra 

Figure 2. 

1 

4 1  2+( ) 
------------------------ 2 1– 

4 
----------------= 

rc rb+( )2 
rc rb –( )2 

– 2 rbrc rc+= 

2)rc 
1 

2 
------- 1 

2 
--- 2rb+⎝ ⎠ 

⎛ ⎞= 

rb = ⎛
⎝1 + ------- r ---– (3)c 42 ⎠ 

Substitute into (2), 

1/21 2⎞ 2 c --- = 2 ⎛1 + -------⎠ r – ---
r
- + rc 4 c2 ⎝ 2 

1 2⎞ 2 c 1/2
--- – r = 2 ⎛1 + -------⎠ r – ---

r
­c 42 c ⎝ 2 

2⎞ 2 c –(1 2r )2 
= 16 × ⎛

⎝1 + ------- r – ---
r
­c 2 ⎠ c 4 rc 

4r
2

– 4r 1+ = (16 + 8 2)r
2

– 4rc c c c 

2 1 1 rcr = ---------------------------- = --------------------------­c 
rc-rb4 3 + 2 2) 4 1 + 2)

2( ( 
rb rb 

Take the positive square root, rb 

1 2 1– 
r = ------------------------ = ---------------- = 2r  (4) 

Figure 3.c 
2 1 +( 2) 2 a 

Substitute into (3), 



2 1⎞ 1 2 1– – 
rb = ⎛1 + ------2-⎞ ⎛ ----------------⎠ ---– = ---------------- = ra⎝ 2 ⎠ ⎝ 2 4 4 

Thus, the three smallest circles have the same radii. The ratios among the radii of the five circles 
are: 

a:a:b:c:c = 1:1:1:2:2. 

Editor’s comments: We are indebted to Professor Hiroshi Okumura of Japan for this wonderful 
shungaku problem. Professor Okumura is a longtime enthusiastic promoter of the Japanese 
equivalent of the USAMTS. 
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