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Important information:

1. You must show your work and prove your answers on all problems. If you
just send a numerical answer with no proof for a problem other than Problem 3, you
will get no more than 1 point.

2. Put your name and USAMTS ID# on every page you submit.

3. No single page should contain solutions to more than one problem. Every solution you
submit should begin on a new page, and you should only submit work on one side of
each piece of paper.

4. Submit your solutions by Monday, October 22, 2012, via one (and only one!) of the
methods below:

(a) Web: Log on to www.usamts.org to upload a PDF file containing your solutions.
(No other file type will be accepted.)
Deadline: 3 PM Eastern / Noon Pacific on October 22

(b) Mail: USAMTS, P.O. Box 2090, Alpine, CA 91903–2090.
(Solutions must be postmarked on or before October 22.)

5. Once you send in your solutions, that submission is final. You cannot resubmit solu-
tions.

6. Confirm that your email address in your USAMTS Profile is correct. You can do so
by logging onto www.usamts.org and visiting the “My USAMTS” pages.

7. Round 1 results will be posted at www.usamts.org when available. To see your results,
log on to the USAMTS website, then go to “My USAMTS”. You will also receive an
email when your scores and comments are available (provided that you did item #6
above).

These are only part of the complete rules.
Please read the entire rules on www.usamts.org.
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Each problem is worth 5 points.
1/1/24. Several children were playing in the ugly tree when suddenly they all fell.

• Roger hit branches A, B, and C in that order on the way down.

• Sue hit branches D, E, and F in that order on the way down.

• Gillian hit branches G, A, and C in that order on the way down.

• Marcellus hit branches B, D, and H in that order on the way down.

• Juan-Phillipe hit branches I, C, and E in that order on the way down.

Poor Mikey hit every branch A through I on the way down. Given only this information, in
how many different orders could he have hit these 9 branches on the way down?

30

2/1/24. Three wooden equilateral triangles of side length 18 inches
are placed on axles as shown in the diagram to the right. Each axle
is 30 inches from the other two axles. A 144-inch leather band is
wrapped around the wooden triangles, and a dot at the top corner is
painted as shown. The three triangles are then rotated at the same
speed and the band rotates without slipping or stretching. Compute
the length of the path that the dot travels before it returns to its
initial position at the top corner.

3/1/24. The symmetric difference, 4, of a pair of sets is the set of
elements in exactly one set. For example,

{1, 2, 3}4{2, 3, 4} = {1, 4}.

There are fifteen nonempty subsets of {1, 2, 3, 4}. Assign each subset
to exactly one of the squares in the grid to the right so that the following
conditions are satisfied.

(i) If A and B are in squares connected by a solid line then A4B has exactly one element.

(ii) If A and B are in squares connected by a dashed line then the largest element of A is
equal to the largest element of B.

You do not need to prove that your configuration is the only one possible; you merely need
to find a configuration that satisfies the constraints above. (Note: In any other USAMTS
problem, you need to provide a full proof. Only in this problem is an answer without
justification acceptable.)
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4/1/24. Let bxc denote the greatest integer less than or equal to x. Let m be a positive integer,
m ≥ 3. For every integer i with 1 ≤ i ≤ m, let

Sm,i =

{⌊
2m − 1

2i−1
n− 2m−i + 1

⌋
: n = 1, 2, 3, . . .

}
.

For example, for m = 3,

S3,1 = {b7n− 3c : n = 1, 2, 3, . . . }
= {4, 11, 18, . . . },

S3,2 =

{⌊
7

2
n− 1

⌋
: n = 1, 2, 3, . . .

}
= {2, 6, 9, . . . },

S3,3 =

{⌊
7

4
n

⌋
: n = 1, 2, 3, . . .

}
= {1, 3, 5, . . . }.

Prove that for all m ≥ 3, each positive integer occurs in exactly one of the sets Sm,i.

5/1/24. An ordered quadruple (y1, y2, y3, y4) is quadratic if there exist real
numbers a, b, and c such that

yn = an2 + bn + c

for n = 1, 2, 3, 4.
Prove that if 16 numbers are placed in a 4× 4 grid such that all four rows are quadratic

and the first three columns are also quadratic then the fourth column must also be quadratic.
(We say that a row is quadratic if its entries, in order, are quadratic. We say the same

for a column.)
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Larger diagram for Problem 3/1/24.

Round 1 Solutions must be submitted by October 22, 2012.
Please visit http://www.usamts.org for details about solution submission.
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