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1/1/34. Shown is a segment of length 19, marked with 20 points dividing the segment into 19
segments of length 1. Draw 20 semicircular arcs, each of whose endpoints are two of the 20
marked points, satisfying all of the following conditions:

1. When the drawing is complete, there will be:

• 8 arcs with diameter 1,

• 6 arcs with diameter 3,

• 4 arcs with diameter 5,

• 2 arcs with diameter 7.

2. Each marked point is the endpoint of exactly two arcs: one above the segment and one
below the segment.

3. No two distinct arcs can intersect except at their endpoints.

4. No two distinct arcs can connect the same pair of points. (That is, there can be no
full circles.)

Three arcs have already been drawn for you.

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the conditions of the problem.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)

Solution
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2/1/34. Given a sphere, a great circle of the sphere is a circle on the sphere whose diameter
is also a diameter of the sphere. For a given positive integer n, the surface of a sphere is
divided into several regions by n great circles, and each region is colored black or white. We
say that a coloring is good if any two adjacent regions (that share an arc as boundary, not
just a finite number of points) have different colors. Find, with proof, all positive integers
n such that in every good coloring with n great circles, the sum of the areas of the black
regions is equal to the sum of the areas of the white regions.

Solution

The answer is all odd n.

If n is odd, consider any point P on the sphere, not on one of the given great circles, and
let Q be the point directly opposite on the sphere (so that PQ is a diameter of the sphere).
Consider any great circle that contains P and Q. If we imagine traveling from P to Q along
the new great circle, we will cross each of the n original great circles exactly once. At each
crossing the color will switch from black to white or vice versa. In particular the color will
switch n times, and since n is odd, this means that Q will have the opposite color from P .
Hence, every point and its opposite point will have opposite colors, and thus the total areas
of the black and white regions will be equal.

On the other hand, if n is even then it is possible for a coloring to have unequal black
and white areas. For instance, let N and S be opposite points on the sphere, and let all n
great circles pass through N and S. (Think of N and S as the north and south poles on a
globe, and the great circles as arcs of constant longitude.) Then the circles can be rotations
about the segment NS arbitrarily, and in particular the black or white areas can be made
arbitrarily large or small. For instance, if n = 2, then if the two great circles are an angle of
30◦ apart from each other, then one color will be 1

6
of the sphere and the other color will be

5
6

of the sphere.
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3/1/34. Prove that there is a unique 1000-digit number N in base 2022 with the following
properties:

1. All of the digits of N (in base 2022) are 1’s or 2’s, and

2. N is a multiple of the base-10 number 21000.

(Note that you must prove both that such a number exists and that there is not more than
one such number. You do not have to write down the number! In fact, please don’t!)

Solution

We prove the more general result that there is a unique n-digit number N in base 2022
that is a multiple of 2n, for all positive n, by induction. If n = 1 then the base case is trivial
as 2 is a multiple of 21 = 2 but 1 is not.

For the induction step, suppose the result holds for all n < k for some k ≥ 2, and let
M be, by inductive hypothesis, the unique (k − 1)-digit number with digits all 1’s and 2’s
that is a multiple of 2k−1. This means that we can write M = m · 2k−1 for some positive
integer m. To prove that N exists, we will show that we can choose a digit d, either 1 or 2,
to append to the front of M such that N = d · (2022)k−1 +M is a multiple of 2k. Indeed, we
can write N as

N = d · (1011)k−1 · 2k−1 + m · 2k−1 =
(
d · (1011)k−1 + m

)
· 2k−1,

hence N is a multiple of 2k if and only if d · (1011)k−1 + m is even. If m is odd, we can
choose d = 1 to make this quantity even, and if m is even we can choose d = 2 to make this
quantity even. Further note that in each of these cases this is the only choice of d ∈ {1, 2}
that works.

To show that N is unique, observe that if N is a k-digit number that is a multiple of 2k,
then we can write N = c · 2k for some positive integer n. Then, if we let N ′ be N with its
initial digit d removed, then

N ′ = N − d · (2022)k−1 = c · 2k − d · (1011)k−1 · 2k−1 =
(
2c− d · (1011)k−1

)
· 2k−1

is a multiple of 2k−1. Since this (k − 1)-digit number is unique by the inductive hypothesis,
we conclude that the unique N that satisfies the condition is the one that is constructed by
appending a 1 or 2 to a (k−1)-digit number that satisfies the condition, as described above.
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4/1/34. Grogg and Winnie are playing a game using a deck of 50 cards numbered 1 through
50. They take turns with Grogg going first. On each turn a player chooses a card from the
deck—this choice is made deliberately, not at random—and then adds it to one of two piles
(both piles are empty at the start of the game). After all 50 cards are in the two piles, the
values of the cards in each pile are summed, and Winnie wins the positive difference of the
sums of the two piles, in dollars. (For instance, if the first pile has cards summing to 510
and the second pile has cards summing to 765, then Winnie wins $255.) Winnie wants to
win as much as possible, and Grogg wants Winnie to win as little as possible. If they both
play with perfect strategy, find (with proof) the amount that Winnie wins.

Solution

Define the “score” to be the positive difference between the piles at any point in the
game; note that Winnie wins the final score amount in dollars.

We claim that Winnie has a strategy that guarantees that she will win at least $75, no
matter how Grogg plays. Her strategy is:

1. Make sure that 50 and 49 end up in the same pile: whenever Grogg plays one of these,
she immediately plays the other in the same pile.

2. Make sure that 2k − 1 and 2k end up in opposite piles, for all 1 ≤ k ≤ 24: whenever
Grogg plays one of these, she immediately plays the other in the other pile.

(a) ensures that 99 gets added to one of the piles, and (b) ensures each of the 24 pairs
{2k − 1, 2k} changes the score by ±1. (The order in which these occur does not matter—
we can imagine (a) happening at the start of the game.) Thus, at worst, Winnie will win
99− 24 = 75 dollars.

On the other hand, we claim that Grogg has a strategy that limits Winnie’s winnings
to at most $75, no matter how Winnie plays. Grogg’s strategy is to always play the largest
remaining card to the pile with the lower total. (If the piles are equal it does not mat-
ter which pile he plays to.) Using this strategy, if the score is si at the start of Grogg’s
ith turn (where 1 ≤ i ≤ 25), and the maximum card remaining in the deck is mi, then
before his next turn, the score will be at most the larger of 2mi − 1 or si − 1. That is,
si+1 ≤ max{2mi, si}− 1. But mi ≤ 51− i if Grogg follows his strategy of always playing the
largest card. So it can be verified by induction that si+1 ≤ 100 − i for all i, and therefore
at the end of the game s26 ≤ 75 is the upper bound for the final score under Grogg’s strategy.

Therefore, if both players play optimally, the final score will be 75. Note that using the
above strategies, one pile will be {1, 3, 5, 7, . . . , 49, 50}, which sums to 675, and the other
pile will be {2, 4, 6, 8, . . . , 48}, which sums to 600.
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Source Note: Based on Problem 142 from Elements of Mathematics, Book B: EM
Problem Book, Cermel, Inc., 1975.
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5/1/34. We call a positive integer n sixish if n = p(p+6), where p and p+6 are prime numbers.
For example, 187 = 11 · 17 is sixish, but 475 = 19 · 25 is not sixish.

Define a function f on positive integers such that f(n) is the sum of the squares of the
positive divisors of n. For example, f(10) = 12 + 22 + 52 + 102 = 130.

(a) Find, with proof, an irreducible polynomial function g(x) with integer coefficients
such that f(n) = g(n) for all sixish n. (“Irreducible” means that g(x) cannot be factored as
the product of two polynomials of smaller degree with integer coefficients.)

(b) We call a positive integer n pseudo-sixish if n is not sixish but nonetheless f(n) = g(n),
where g(n) is the polynomial function that you found in part (a). Find, with proof, all
pseudo-sixish positive integers.

Solution

(a) Let n = p(p + 6) be sixish. The divisors of n are {1, p, p + 6, n}, so

f(n) = 12 + p2 + (p + 6)2 + n2

= 1 + p2 + p2 + 12p + 36 + n2

= n2 + 2p(p + 6) + 37

= n2 + 2n + 37.

Thus g(n) = n2 + 2n + 37.

(b) The answer is that 27 is the only psuedo-sixish number.

For any n, let h(n) = g(n) − f(n). Note that n is pseudo-sixish if h(n) = 0 where n is
not of the form p(p + 6) where p and p + 6 are both prime.

First, note that h(1) = 40− 1 = 39, so 1 is not pseudo-sixish.

Next, note that if n is prime, then h(n) = (n2 + 2n + 37) − (n2 + 1) = 2n + 36 6= 0, so
any prime number is not pseudo-sixish.

Similarly, if n = p2 for some prime p, then h(n) = (p4 + 2p2 + 37) − (p4 + p2 + 1) =
p2 + 36 6= 0, so any square of a prime number is not pseudo-sixish.

This means that if n is pseudo-sixish, then we can choose integers r, s with 1 < r < s
such that n = rs. In this case, f(n) = 1 + r2 + s2 + n2 + xn, where xn is the sum of the
squares of all divisors of n other than {1, r, s, n}. Then

0 = h(n) = n2 + 2n + 37− (1 + r2 + s2 + n2 + xn) = 2n + 36− r2 − s2 − xn.
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But 2n = 2rs, so 2n − r2 − s2 = −(s − r)2, and we can rewrite the above equation as
xn = 36− (s− r)2.

If xn = 0, then s− r = 6 and {1, r, s, n} are the only divisors of n. One possibility is that
r and s are both prime, but that means that n is sixish and not pseudo-sixish. The other
possibility is that n = r3 with r prime, so that s = r2. But then r2− r = 6, so r = 3. Hence
n = 33 = 27 is pseudo-sixish.

If xn > 0, then since xn = 36 − (s − r)2 it must be one of {11, 20, 27, 32, 35}. But at
the same time, xn is the sum of squares of distinct divisors of n greater than 1 (other than
r, s, and n itself). The only possibility is xn = 20 = 22 + 42, so that the divisors of n are
{1, 2, 4, r, s, n}. But if n has exactly 6 divisors, it must be of the form p2q or p5 for primes
p and q. In either of these cases we must have p = 2, but then we have in the former case
r = q and s = 2q, and in the latter case we have r = 8 and s = 16, and in neither of these
is n = rs satisfied. Thus xn > 0 is not possible.

Therefore, the only psuedo-sixish number is 27.

Source note: This problem and solution were inspired by:
T. Chaobankoh and P. Chomchit, “A Product of Two Primes with Difference 2,” American
Mathematical Monthly, 129(2), p. 115.
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