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1/2/32. In the grid below, fill each gray cell with one of the num-
bers from the provided bank, with each number used once, and fill
each white cell with a positive one-digit number. The number in a
gray cell must equal the sum of the numbers in all touching white
cells, where two cells sharing a vertex are considered touching. All
of the terms in each of these sums must be distinct, meaning that
two white cells with the same digit may not touch the same gray cell.

Bank: 15, 23, 28, 35, 36, 38, 40, 42, 44

There is a unique solution, but you do not need to prove that your answer is the only
one possible. You merely need to find an answer that satisfies the constraints above. (Note:
in any other USAMTS problem, you need to provide a full proof. Only in this problem is
an answer without justification acceptable.)

Solution
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2/2/32. Infinitely many math beasts stand in a line, all six feet apart, wearing masks, and
with clean hands. Grogg starts at the front of the line, holding n pieces of candy, n ≥ 1, and
everyone else has none. He passes his candy to the beasts behind him, one piece each to the
next n beasts in line. Then, Grogg leaves the line. The other beasts repeat this process: the
beast in front, who has k pieces of candy, passes one piece each to the next k beasts in line,
and then leaves the line. For some values of n, another beast, besides Grogg, temporarily
holds all the candy. For which values of n does this occur?

Solution

We present two different solutions to this problem.

Solution 1.

We claim that the only values of n where some other beast besides Grogg temporarily
holds all the candy are n = 1 and n = 2. If n = 1, then Grogg will pass the only piece of
candy to the beast behind him, and the condition is satisfied. If n = 2, then Grogg will pass
one piece of candy to each of the two beasts behind him. Then, the beast who was initially
behind Grogg will pass their piece of candy to the beast behind them, meaning that the
beast who was originally two places behind Grogg will be holding both pieces of candy. So
this indeed occurs when n = 1 or n = 2.

To finish the proof, we claim that when n ≥ 3, no other beast besides Grogg will teporar-
ily hold all the candy. Let n ≥ 3 be a fixed integer. Suppose that each beast in line is
numbered for their initial place in line, so that Grogg is given the number 1, the beast be-
hind Grogg is given the number 2, and so on. Now, we prove a lemma:

Lemma. When each beast numbered s ≥ 3 reaches the front of the line, they will have
at least two pieces of candy, and the beast behind them will have at least one piece of candy.

Proof. We prove this by induction on s: First, we look at the base case s = 3. After Grogg
passes his candy and leaves the line, each of the beasts numbered 2 through n+ 1 will have
one piece of candy. After the beast numbered 2 passes their candy and leaves the line, the
beast numbered 3 will have two pieces of candy, and each of the beasts numbered 4 through
n+ 1 will each have one piece of candy. Since n ≥ 3, the claim is true for s = 3.

Suppose that when the beast numbered s = k reaches the front of the line, they have at
least two pieces of candy, and the beast numbered k+1 has at least one piece of candy. Then
as the beast numbered k passes their candy, they must give one piece to the beast numbered
k + 1 and one piece to the beast numbered k + 2. Therefore, when the beast numbered k
leaves the line and the beast numbered k+1 reaches the front of the line, the beast numbered
k + 1 will have at least two pieces of candy and the beast numbered k + 2 will have at least
one piece of candy, and induction is complete.
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Our Lemma allows us to finish the proof as follows: As described in the base case of the
Lemma, when the beast numbered 2 reaches the front of the line, they will only have 1 piece
of candy, which is not all the candy as n ≥ 3. Then, when every other beast reaches the front
of the line, they will not have all the candy as the beast behind them will have at least one
piece of candy. Furthermore, one can see that as each beast passes out their candy in turn,
they will pass their candy to at least two other beasts, so no beast will temporarily hold
all the candy during the candy-passing process. Therefore, as our choice of n was arbitrary,
when n ≥ 3, no other beast besides Grogg will temporarily hold all the candy.

Solution 2.

We claim that the only values of n where some other beast besides Grogg temporarily
holds all the candy are n = 1 and n = 2. As in the previous solution, we can directly show
this indeed occurs when n = 1 or n = 2. Now, suppose that there exists some beast besides
Grogg, say Lizzie, who at some point temporarily holds all the candy, and that Lizzie is
the first beast in line for which this is true. We claim that if this happens, then n ≤ 2,
completing our proof.

Call one iteration of the candy-passing process described in the problem a candy-passing
cycle, so that after a positive integer number of candy-passing cycles, no beast is in the
middle of passing out candy, and the beast who previously passed out candy has left the
line. Then Lizzie must hold all the candy after some integer number of candy-passing cycles.

Consider the distribution of candy among the beasts one candy-passing cycle before Lizzie
first holds all the candy. We make a series of observations about this distribution of candy:

• Lizzie cannot be the first beast in line at this point, or she would not be in the line
one candy-passing cycle later, a contradiction.

• Only Lizzie and one other beast (say Winnie) could possibly have any candy: If two
or more beasts aside from Lizzie had candy, only one of them could be at the front of
the line, so after one candy-passing cycle, there must be at least one beast aside from
Lizzie with candy, a contradiction.

• The beast at the front of the line must have at least one piece of candy: If they
have no candy, then they would leave the line in the next candy-passing cycle without
changing the distribution of candy, so Lizzie must already be holding all the candy, a
contradiction.

Since Lizzie cannot be the first beast in line, Winnie must be, and Lizzie must be standing
immediately behind Winnie (or the beast immediately behind Winnie will have some candy
after one candy-passing cycle, a contradiction).
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If Winnie had more than 1 piece of candy, then Winnie passing out candy would cause
the beast immediately behind Lizzie to have some candy one candy-passing cycle later, a
contradiction. Therefore, one candy-passing cycle before Lizzie has all the candy, Winnie
must have exactly 1 piece of candy and Lizzie must have exactly n − 1 pieces of candy.
However, we claim that Winnie must have at least as many pieces of candy as Lizzie has,
and demonstrate this by proving a more general lemma:

Lemma. After any whole number of candy-passing cycles, the amount of candy the
beasts in line are holding, from front to back, is nonstrictly monotonically decreasing. That
is, the number of pieces of candy each beast has is greater than or equal to the number of
pieces of candy the beast behind them has.

Proof. We prove this by induction on c, the number of elapsed candy-passing cycles. When
c = 0, the amount of candy the beasts in line are holding is nonstrictly monotonically de-
creasing, since Grogg has all the candy.

Suppose that when c = m, the amount of candy the beasts in line are holding is nonstrictly
monotonically decreasing. In particular, suppose that at this point, the ith beast in line is
holding ai pieces of candy, so the first n+1 beasts in line at this point are holding a1 ≥ a2 ≥
· · · ≥ an ≥ an+1 pieces of candy (noting that at most n beasts in line can hold candy at any
given point). Then after the first beast passes their candy out and leaves the line, the first n
beasts will then be holding a2 + 1, . . . , aa1+1 + 1, aa1+2, . . . , an+1 candies respectively. Since
a2 ≥ a3 ≥ · · · ≥ an ≥ an+1, it follows that a2 + 1 ≥ · · · ≥ aa1+1 + 1 ≥ aa1+2 ≥ · · · ≥ an+1.
Therefore, when c = m+ 1, the amount of candy the beasts in line are holding is nonstrictly
monotonically decreasing, and induction is complete.

From our Lemma, since Winnie is holding 1 piece of candy, Lizzie is holding n− 1 pieces
of candy, and Lizzie is standing immediately behind Winnie, then 1 ≥ n−1. But this means
that n ≤ 2, as desired.
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3/2/32. Given a nonconstant polynomial with real coefficients f(x), let S(f) denote the sum of
its roots. Let p and q be nonconstant polynomials with real coefficients such that S(p) = 7,
S(q) = 9, and S(p− q) = 11. Find, with proof, all possible values for S(p+ q).

Solution

We claim all possible values for S(p+ q) are 3, 7, 8, and
25

3
.

Note that by Vieta’s formulas, S(f) is completely determined by the first two coefficients
of f, and in particular, if S(f) = k, then the degree-d polynomial

f(x) = cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0

satisfies k = −cd−1

cd
. Therefore, the polynomials p and q must be of the form

p(x) = axn − 7axn−1 + · · ·
q(x) = bxm − 9bxm−1 + · · ·

where a, b are nonzero real numbers, n,m are the respective degrees of p(x) and q(x), and
terms of lower order are omitted.

Next, we consider how the degrees of the polynomials p(x) and q(x) compare, and claim
that |n−m| ≤ 1. If n ≥ m+ 2, then the leading terms of the polynomial p(x)− q(x) would
be axn−7axn−1, but this is not possible as then S(p−q) = 7, not 11. Similarly, if m ≥ n+2,
the leading terms of the polynomial p(x)−q(x) would be −bxm+9bxm−1, but S(p−q) would
then be 9, not 11. Therefore, we have |n−m| ≤ 1.

This means that either n = m,n = m+ 1, or n = m− 1. We analyze each of these cases
separately, and determine the possible values of S(p+ q) in each case:

• Suppose n = m. Then

p(x)− q(x) = (a− b)xn − (7a− 9b)xn−1 + · · · ,

so either a = b or
7a− 9b

a− b
= 11.

– If a = b, then p(x) + q(x) = 2axn − 16axn−1 + · · · , so S(p + q) =
16a

2a
= 8. This

is feasible, by letting p(x) = x2 − 7x and q(x) = x2 − 9x+ 22.

– If
7a− 9b

a− b
= 11, then b = 2a, giving p(x) + q(x) = 3axn − 25axn−1 + · · · , so

S(p+q) =
25a

3a
=

25

3
. This is feasible, by letting p(x) = x−7 and q(x) = 2x−18.
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• Suppose n = m+ 1. Then

p(x)− q(x) = axn − (7a+ b)xn−1 + · · · ,

so
7a+ b

a
= 11. Then b = 4a, so p(x)+q(x) = axn−3axn−1+· · · and S(p+q) =

3a

a
= 3.

This is feasible, by letting p(x) = x2 − 7x and q(x) = 4x− 36.

• Suppose n = m− 1. Then

p(x)− q(x) = −bxn+1 − (−a− 9b)xn + . . . ,

so
−a− 9b

−b
= 11. Then a = 2b, so p(x) + q(x) = bxn+1 − 7bxn + . . . and S(p + q) =

7b

b
= 7. This is feasible, by letting p(x) = 2x− 14 and q(x) = x2 − 9x.

Thus, there are four possible values for S(p+ q): 3, 7, 8, and
25

3
.
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4/2/32. Let ABC be a triangle with AB < AC. As shown below, T is the point on BC such
that AT is tangent to the circumcircle of4ABC. Additionally, H and O are the orthocenter
and circumcenter of 4ABC, respectively. Suppose that CH passes through the midpoint of
AT . Prove that AO bisects CH.

A

B C

O

T

H

X

Y

Solution

We present two different solutions to this problem.

Solution 1.

We claim that
AX

XT
=
HY

Y C
, implying the result. Before approaching the actual problem,

we state and prove a useful lemma (colloquially known as the Ratio Lemma):

Ratio Lemma. Let D be a point on side BC of 4ABC. Then
BD

DC
=

sin∠BAD
sin∠CAD

· AB
AC

.

A

B CD

Proof. By the Law of Sines on 4ABD and 4ADC, we have

BD

sin∠BAD
=

AB

sin∠ADB
and

DC

sin∠CAD
=

AC

sin∠ADC
.

Since ∠ADB and ∠ADC are supplementary, it follows that sin∠ADB = sin∠ADC. There-
fore, by rearranging, we see that

AB

BD
· sin∠BAD = sin∠ADB = sin∠ADC =

AC

DC
· sin∠CAD.

Therefore,
AB

BD
· sin∠BAD =

AC

DC
· sin∠CAD, and rearranging this equation gives us

BD

DC
=

sin∠BAD
sin∠CAD

· AB
AC

, as desired.
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As noted in the diagram below, let X be the intersection of the lines CH and AT, and
let Y be the intersection of the lines CH and AO. Let P be the intersection of AB and
CX, and Q be the intersection of the extension of AH with BC. Note that CP and AQ are
altitudes, so it follows that 4APC,4BPC,4AQC, and 4AQB are right:

P

Q

A

B C

O

T

H

X

Y

Applying the Ratio Lemma to 4ACT with point X on AT, we get

AX

XT
=

sin∠ACX
sin∠TCX

· AC
CT

.

Since 4APC is right, we have

sin∠ACX = sin∠ACP = cos∠PAC = cos∠BAC.

Similarly, since 4BPC is right,

sin∠TCX = sin∠BCP = cos∠CBP = cos∠CBA.

Applying the Law of Sines to 4ACT, we find
AC

CT
=

sin∠CTA
sin∠TAC

. By looking at inscribed

angles in the circumcircle of 4ABC, we see that

∠CTA =
1

2

(
ÂC − ÂB

)
= ∠CBA− ∠ACB

and

∠TAC =
1

2

(
B̂C + ÂB

)
= ∠BAC + ∠ACB.

Substituting all of this into our original expression for
AX

XT
, we get

AX

XT
=

sin∠ACX
sin∠TCX

· AC
CT

=
cos∠BAC
cos∠CBA

· sin(∠CBA− ∠ACB)

sin(∠BAC + ∠ACB)
.

Finally, we undertake a similar line of reasoning in 4HAC to obtain an expression for
HY

Y C
identical to that in our equality chain above. Applying the Ratio Lemma in 4HAC

with point Y on HC, we get
HY

Y C
=

sin∠HAY
sin∠CAY

· AH
AC

.
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Furthermore, by the Law of Sines on 4HAC, we have
AH

AC
=

sin∠ACH
sin∠CHA

, so

HY

Y C
=

sin∠HAY
sin∠CAY

· sin∠ACH
sin∠CHA

.

Since 4APC is right, we have

sin∠ACH = sin∠ACP = cos∠PAC = cos∠BAC.

Since AT is tangent to the circumcircle of 4ABC, it follows from our work above (and since
4BPC is right) that

sin∠CAY = sin(∠TAC − ∠TAY )

= sin(∠TAC − ∠TAO)

= sin(∠BAC + ∠ACB − 90◦)

= sin(90◦ − ∠CBA)

= cos∠CBA.

Since AT is a tangent and AH is an altitude, we have ∠HAY = ∠TAY − ∠TAH =
90◦ − ∠TAH = ∠CTA. By our work above, ∠CTA = ∠CBA − ∠ACB, so sin∠HAY =
sin(∠CBA− ∠ACB). Then by looking at the right triangles 4AQC and 4APC, we have

sin∠CHA = sin(180◦ − ∠HAC − ∠ACH)

= sin((90◦ − ∠HAC) + (90◦ − ∠ACH))

= sin(∠ACB + ∠BAC).

Substituting all this into our original expression, we get

HY

Y C
=

sin∠HAY
sin∠CAY

· sin∠ACH
sin∠CHA

=
sin(∠CBA− ∠ACB)

cos∠CBA
· cos∠BAC

sin(∠BAC + ∠ACB)

=
cos∠BAC
cos∠CBA

· sin(∠CBA− ∠ACB)

sin(∠BAC + ∠ACB)
.

This is equal to the expression we found for
AX

XT
, which means that

AX

XT
=

HY

Y C
. Since

CH passes through point X, which we are supposing to be the midpoint of AT , we have
AX = XT. It follows that HY = Y C, and therefore AO bisects CH, as desired.
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Solution 2.

For a primer on complex bashes, see https://web.evanchen.cc/handouts/cmplx/en-cmplx.
pdf.

In this solution, lowercase letters denote complex numbers and WLOG a, b, and c all lie
on the unit circle. This means that a = 1/a, b = 1/b, and c = 1/c.

The equation for a line in the complex plane passing through points α and β on the unit
circle is z + αβz = α + β. Setting α = β gives the equation for a line tangent to the unit
circle. The tangent line through a has equation z + a2z = 2a, and the line through b and c
has equation z + bcz = b+ c. Since t is the intersection of these lines, we have:

t+ a2t = 2a,

t+ bct = b+ c.

Isolating t on both sides:

t = 2a− a2t,
t = b+ c− bct.

Setting both right-hand sides equal to each other and solving:

t =
2a− b− c
a2 − bc

.

Undoing the conjugate:

t =

(
2a− b− c
a2 − bc

)
=

2/a− 1/b− 1/c

1/a2 − 1/(bc)
=
a2b+ a2c− 2abc

a2 − bc
.

Now let’s find the equations for h, o, and x. It is well-known that h = a + b + c and
o = 0. Since x is the midpoint of a and t,

x =
a+ t

2
.

Let y be the midpoint of c and h. Our goal now is to prove that a, o, and y are collinear.

y =
c+ h

2
=
a+ b+ 2c

2

Since c, x, and h are collinear, the quantity x−c
h−c

must be real:

x− c
h− c

=
a+t
2
− c

a+ b+ c− c

=
a+ t− 2c

2(a+ b)
.
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Since this quantity is real:

a+ t− 2c

2(a+ b)
=

(
a+ t− 2c

2(a+ b)

)
a+ t− 2c

2(a+ b)
=

1/a+ t− 2/c

2/a+ 2/b

a+ t− 2c = b+ abt− 2ab/c

a+
a2b+ a2c− 2abc

a2 − bc
− 2c = b+

ab(2a− b− c)
a2 − bc

− 2ab/c

0 =
(a− c)(2bc2 + cb2 − ca2 − 2ba2)

c(a2 − bc)
.

Since a−c
c(a2−bc)

is not equal to 0, we can divide it out, getting:

2bc2 + cb2 = ca2 + 2ba2.

Continuing the algebra:

bc(b+ 2c) = a2(c+ 2b)

b+ 2c

a
=
a(c+ 2b)

bc
b+ 2c

a
=

1/b+ 2/c

1/a

b+ 2c

a
=

(
b+ 2c

a

)
.

So b+2c
a

is real. Thus, 1
2
× b+2c

a
+ 1

4
= a+b+2c

2a
= y−o

a−o
is also real, so a, o, and y must be

collinear.
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5/2/32. Let a1 be any positive integer. For all i, write 52020 times ai in base 10, replace each
digit with its remainder when divided by 2, read off the result in binary, and call that ai+1.
Prove that aN = aN+22020 for all sufficiently large N .

Solution

We prove a stronger result: For any fixed positive integer k, if we replace every instance
of 2020 in the problem with k, then the result will be true. Let f(n) be the result of taking
the digits of 5k · n (mod 2) and reading them in binary. (That is, f(ai) = ai+1 for all i.) To
show this, we prove a series of lemmas:

Lemma 1. For all n, b with b ≤ k,

(a) f(n+ 2b) ≡ f(n) + 2b (mod 2b+1), and

(b) f(n+ 2b+1) ≡ f(n) (mod 2b+1).

Proof. For part (a), since b ≤ k, we have

5k · (n+ 2b) = 5k · n+ 10b · 5k−b.

Notice that 10b · 5k−b ends in b zeroes preceded by either a 1 or 5. Therefore, when it is
added to 5k · n, the parities of the last b digits do not change while the parity of the one
with place value 10b does. When we convert all digits to 0 or 1 based on their parity, then
between f(n + 2b) and f(n), only the digit in place value 2b changes out of the last b + 1
binary digits. In modular arithmetic, this is exactly the given statement.

Similarly, for part (b), we have

5k · (n+ 2b+1) = 5k · n+ 10b · 5k−b · 2.

Notice that 10b·5k−b ends either in b zeroes preceded with a 2, or with b+1 zeroes. Regardless,
when it is added to 5k ·n, the parities of the last b+1 digits do not change, so when converted
to binary, both f(n+ 2b+1) and f(n) have the same last b+ 1 binary digits, as desired.

Note that Lemma 1(b) implies that f is a well-defined function when its input and out-
put are taken modulo any power of 2 that is at most 2k+1. (That is, if two inputs to f are
congruent modulo that power of 2, their outputs will be as well.)

Lemma 2. For all i, b with b ≤ k, ai ≡ ai+2b (mod 2b+1).

Proof. We induct on b. For the base case b = 0, we are working mod 2, so we only need to
look at the cases where ai = 0 or ai = 1. If ai = 0, then clearly ai+1 = 5k · 0 ≡ 0 (mod 2).
Also, if ai = 1, then ai+1 = 5k · 1 ≡ 5k ≡ 1 (mod 2). By Lemma 1(b), this establishes the
base case b = 0.
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Suppose the given statement is true for b− 1. Since a1 ≡ a1+2b−1 (mod 2b), there are two
cases for the relationship between these two mod 2b+1:

Case 1: a1 ≡ a1+2b−1 (mod 2b+1).

In this case, since f is well-defined modulo 2b+1, we have ai ≡ ai+2b−1 (mod 2b+1) for all
i, which means ai ≡ ai+2b−1 ≡ ai+2b (mod 2b+1) for all i. This completes the induction for
this case.

Case 2: a1 ≡ a1+2b−1 + 2b (mod 2b+1).

In this case, by Lemma 1(a) and the well-definedness of f, we have ai ≡ ai+2b−1 + 2b

(mod 2b+1) for all i, which implies ai ≡ ai+2b−1 + 2b ≡ ai+2b + 2 · 2b ≡ ai+2b (mod 2b+1) once
again. This completes the induction for this case.

Lemma 3. For all n, f(n) < max(n, 2k+1).

Proof. Let n be a fixed positive integer, and let d be the unique integer such that

2k · 10d ≤ n < 2k · 10d+1.

Then n · 5k < 10d+k+1. In particular, n · 5k has at most d + k + 1 digits, meaning f(n) is
less than 2d+k+1. If d = 0, then f(n) < 2k+1 and we are done. Otherwise, we have d ≥ 1, in
which case we have

f(n) < 2d+k+1 < 2k · 10d ≤ n,

so f(n) < n. Since our choice of n was arbitrary, we are done.

Now we finish the problem. Lemma 3 tells us that as f is iteratively applied to a1, the
result keeps getting smaller until it is at some point less than 2k+1, so there exists an N such
that 0 ≤ ai < 2k+1 for all i ≥ N . Then for all i ≥ N, setting b = k in Lemma 2 tells us that
ai = ai+2k , and the proof is complete.
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