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1/1/32. Fill in each empty cell of the grid with a digit from
1 to 8 so that every row and every column contains each
of these digits exactly once. Some diagonally adjacent cells
have been joined together. For these pairs of joined cells,
the same number must be written in both.

There is a unique solution, but you do not need to prove
that your answer is the only one possible. You merely
need to find an answer that satisfies the constraints above.
(Note: In any other USAMTS problem, you need to pro-
vide a full proof. Only in this problem is an answer without
justification acceptable.)

Solution
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2/1/32. Is it possible to fill in a 2020× 2020 grid with the integers from 1 to 4,080,400 so that
the sum of each row is 1 greater than the previous row?

Solution

We claim such a grid is not possible, and show this by contradiction. Suppose this were
possible, and fix an arrangement of the integers from 1 through 4,080,400 in a 2020× 2020
grid where the sum of each row is 1 greater than the previous row. Let S be the sum of the
entries in the first row of this grid. Note that since each entry in the grid is an integer, S
must also be an integer. Since the sum of each row is 1 greater than the previous row, it
follows that the sum of the entries in the second row of the grid is S + 1, the sum of the
entries in the third row of the grid is S + 2, and so on, so that the sum of the entries in the
2020th row of the grid is S + 2019. Since the entries in the grid are the integers from 1 to
4,080,400, it then follows that

S + (S + 1) + (S + 2) + · · ·+ (S + 2018) + (S + 2019) = 1 + 2 + 3 + · · ·+ 4,080,399 + 4,080,400.

Since the sum of the first n positive integers is
n(n + 1)

2
, the left-hand side of this equation

is equal to

2020S +
2019 · 2020

2
= 1010(2S + 2019).

Furthermore, since 4,080,400 = 20202, the right-hand side of this equation is equal to

20202(20202 + 1)

2
= 1010 · 2020 · (20202 + 1).

Observe that the right-hand side of this equation is divisible by 4. However, the left-hand
side of this equation is not divisible by 4, since 2S + 2019 is odd and 1010 is not divisible by
4. This is a contradiction, so it follows that it is not possible to fill in this grid in the desired
manner.
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3/1/32. The bisectors of the internal angles of parallelogram ABCD determine a quadrilateral
with the same area as ABCD. Given that AB > BC, compute, with proof, the ratio
AB/BC.

Solution

We claim that
AB

BC
= 2 +

√
3. Let PQRS be the quadrilateral determined by the angle

bisectors, and let W,X, Y, Z be the points where the bisectors intersect AB and CD, as
shown in the following diagram:

P

Q

R

S

A B

CD

W X

YZ

First, we claim that AW = XB = CY = DZ = AD = BC. Because AB ‖ CD
and AS bisects ∠DAW, it follows that ∠AZD = ∠WAZ = ∠ZAD. Similarly, ∠AWD =
∠WDZ = ∠ADW. Since 4ADP and 4ZDP have side DP in common, it follows that
they are congruent, and similarly, 4ADP ∼= 4AWP. By triangle congruence, it follows that
AW = AD = DZ.

Similarly, we can show that 4CY R ∼= 4CBR ∼= 4XBR, so XB = BC = CY. Finally,
since ABCD is a parallelogram, we know AD = BC, demonstrating the desired equality.
Also, note that since AD = BC, we actually have

4AWP ∼= 4XBR ∼= 4CY R ∼= 4ZDP ∼= 4ADP ∼= 4CBR.
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Next, we claim that 4ZY S ∼= 4XWQ. By the properties of parallelograms and angle
bisectors, we see that

∠QDC =
1

2
∠ADC =

1

2
∠ABC = ∠ABS = ∠BY C,

so DQ ‖ BS. Similarly, AS ‖ CQ. Then,

∠DAP + ∠ADP =
1

2
(∠DAB + ∠ADC) =

1

2
· 180◦ = 90◦,

so ∠APD and ∠QPS are right. It follows from the properties of parallel lines that PQRS
is a rectangle.
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Now, by vertical angles, we have ∠QWX = ∠AWP = ∠CY R = ∠SY Z, and since
AW = XB = CY = ZD, we also have WX = ZY = AB − 2 · BC. Because 4ZY S and
4XWQ are right triangles with identical angles and the same hypotenuse length, we have
4ZY S ∼= 4XWQ.

Finally, we show
AB

BC
= 2+

√
3. Because hexagon WXRY ZP is contained in both ABCD

and PQRS - which have the same area - and by the triangle congruences noted above, we
have

2[4ZY S] = 6[4DZP ] or [4ZY S] = 3[4DZP ].

Since ∠DPZ and ∠ZSY are right and ∠PZD = ∠SZY by vertical angles, it also follows
that 4ZY S and 4DZP are similar. Thus, ZY =

√
3 · DZ. Finally, since DZ = BC and

ZY = AB − 2 ·BC, we have
√

3 ·BC = AB − 2 ·BC and hence
AB

BC
= 2 +

√
3 .
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4/1/32. Two beasts, Rosencrans and Gildenstern, play a game. They have a circle with n
points (n ≥ 5) on it. On their turn, each beast (starting with Rosencrans) draws a chord
between a pair of points in such a way that any two chords have a shared point. (The
chords either intersect or have a common endpoint.) For example, two potential legal moves
for the second player are drawn below with dotted lines.

The game ends when a player cannot draw a chord. The last beast to draw a chord wins.
For which n does Rosencrans win?

Solution

For this problem, it suffices to demonstrate a winning strategy for Rosencrans for all n
where Rosencrans wins, and to demonstrate a winning strategy for Gildenstern for all other
n. However, in this solution, we make a stronger claim: this game will always end after n
moves, no matter what moves Rosencrans and Gildenstern make. Consequently, Rosencrans
will win for all odd positive integers n ≥ 5.

Starting with an arbitrary point, label the points on the circle with the integers
0, 1, 2, . . . , n − 1 in clockwise order, and denote by s, t the chord with endpoints labeled s
and t. First, we consider when two chords will have a shared point. Suppose s, t and u, v
are two chords with four distinct endpoints (if two chords have a shared endpoint, these two
chords will certainly have a shared point), and without loss of generality, suppose that s has
the smallest numerical label of the four endpoints. Then the two chords will intersect if and
only if u, v has one endpoint on each of the clockwise-directed arcs from the point labeled s
to the point labeled t and from the point labeled t to the point labeled s respectively - that
is, if s < u < t < v or s < v < t < u. Hence, more generally, two chords will intersect if and
only if s ≤ u ≤ t ≤ v or s ≤ v ≤ t ≤ u.

For all integers 0 ≤ k ≤ n − 1, define the kth parallel class of chords as the set of all
chords whose endpoint labels sum to k (mod n). (This terminology is motivated by the fact
that all the chords in a given parallel class are indeed parallel when all the points on our
circle are evenly spaced out.) Note that by construction, this partitions the set of chords
into n subsets. Now, we make two claims about parallel classes:

Lemma 1. No two chords in the same parallel class have a shared point.

Lemma 2. Let 0 ≤ k ≤ n− 1 be an integer. If, at any point in the game, a chord in the
kth parallel class has not been drawn, the player whose turn it is can legally draw a chord
from the kth parallel class.
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These two lemmas allow us to finish the proof, as follows. Since any two chords drawn
by Rosencrans and Gildenstern must have a shared point, Lemma 1 tells us that they can’t
draw two chords from the same parallel class over the course of the game. Thus, during
the game, they can draw at most one chord from each parallel class, and since there are n
parallel classes, the game will end in at most n moves.

Then, as long as Rosencrans and Gildenstern have collectively made fewer than n moves,
Lemma 2 tells us that the player whose turn it is will always be able to make a legal move.
Hence, the game will always end in exactly n moves.

We finish by proving both of these lemmas:

Proof of Lemma 1. Firstly, no two chords in the same parallel class can have a shared end-
point, since a chord in the kth parallel class with endpoint s must, by construction, also have
endpoint k − s (mod n). Now, suppose s, t and u, v are both in the kth parallel class, and
without loss of generality, suppose s has the smallest numerical label of the four endpoints.
It is impossible for s < u < t < v. Suppose this were the case. We know that s + t ≡ u + v
(mod n), but since s < u and t < v, it must be the case that s + t < u + v. Also, u ≤ t− 1
and v ≤ s + n− 1. So s + t < u + v ≤ s + t + (n− 2) < s + t + n. This is a contradiction,
so it can’t be the case that s < u < t < v. Similarly, it is impossible for s < v < t < u, and
so by our previous work, no two chords in the same parallel class have a shared point.

Proof of Lemma 2. If no chords have been drawn, clearly Rosencrans can draw in any chord
in the kth parallel class. If only one chord s, t has been drawn (which is not in the kth

parallel class), then Gildenstern can attempt to pick an endpoint of this chord and draw a
chord in the kth parallel class containing this endpoint. If this is not possible, this means
that s ≡ k − s (mod n) and t ≡ k − t (mod n), so 2s ≡ 2t ≡ k (mod n). In this case,
Gildenstern can draw in the chord between the endpoints with labels s + 1 (mod n) and
s− 1 (mod n). Hence, we assume that at least two chords (from distinct parallel classes, as
shown by Lemma 1) have already been drawn in the game.

Now, let 0 ≤ i ≤ n− 1 be an integer such that the chord s, t in the ith parallel class has
been drawn and no chords in the parallel classes numbered i + 1, i + 2, . . . , k − 1 (mod n)
have been drawn. (This is guaranteed to exist; one can think of “counting backwards from
k mod n” until reaching the first number whose parallel class already has a drawn chord.)
Similarly, let 0 ≤ j ≤ n−1 be an integer such that the chord u, v in the jth parallel class has
been drawn and no chords in the parallel classes numbered k + 1, k + 2, . . . , j − 1 (mod n)
have been drawn.

Since these chords were drawn legally, the chords s, t and u, v must either have a common
endpoint or intersect inside the circle. Without loss of generality, suppose that s ≤ u ≤ t ≤ v.
(Note that at most two of these labels are equal.)
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Now, we claim it is possible to choose some point labeled w amongst the points labeled
s, s + 1, . . . , u and some point labeled x amongst the points labeled t, t + 1, . . . , v such that
w, x is in the kth parallel class. Consider the sequence of chords

s, t, s + 1, t, . . . , u, t, u, t + 1, . . . , u, v.

By removing identical chords from the sequence, suppose these are distinct. Then, these
chords are in the parallel classes numbered i, i + 1, . . . , j (mod n) respectively, so by con-
struction, one of these chords must be in the kth parallel class.

To complete the proof of the Lemma, we claim that this chord w, x can be legally drawn.
First, w, x has a shared point with both s, t and u, v, since by construction, we have

s ≤ w ≤ u ≤ t ≤ x ≤ v.

In particular, this means that s ≤ w ≤ t ≤ x and w ≤ u ≤ x ≤ v, so w, x has a shared point
with both s, t and u, v.

Now, let y, z be any other chord which has already been drawn in the game. We
claim that w, x and y, z must have a shared point. Since s, t and y, z must have a shared
point, without loss of generality suppose s ≤ y ≤ t ≤ z. (The other three cases - namely
s ≤ z ≤ t ≤ y, z ≤ s ≤ y ≤ t, y ≤ s ≤ z ≤ t - are similar by symmetry and/or relabeling by
adding the same number to all point labels, then considering the labels mod n.) Since y, z
must also have a shared point with u, v, this leaves us with two cases:

Case 1: u ≤ y ≤ v ≤ z. In this case, we have u ≤ y ≤ t and v ≤ z, telling us that

s ≤ w ≤ u ≤ y ≤ t ≤ x ≤ v ≤ z.

In particular, this means that w ≤ y ≤ x ≤ z, and so w, x and y, z have a shared point.

Case 2: y ≤ u ≤ z ≤ v. We claim this case cannot occur. Suppose for a contradiction
that this were the case. Then we have s ≤ y ≤ u and t ≤ z ≤ v. Now, consider the sequence
of chords

s, t, s + 1, t, . . . , y, t, y, t + 1, . . . , y, z, y + 1, z, . . . , u, z, u, z + 1, . . . , u, v.

By removing identical chords from the sequence, suppose these are distinct. Then, these
chords are in the parallel classes numbered i, i+1, . . . , j (mod n) respectively, and in partic-
ular, y, z must belong to one of these parallel classes. However, by construction, there have
only been three chords drawn which belong to one of these parallel classes - s, t, u, v, and
w, x - and by Lemma 1, Rosencrans and Gildenstern cannot draw in two chords from the
same parallel class over the course of a game. Hence, this is a contradiction, and this case
cannot happen.

This tells us that w, x and y, z must have a shared point. Since our choice of y, z was
arbitrary, w, x can be legally drawn.
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This concludes the proof of both lemmas. As detailed above, this means that the game
will always end in exactly n moves, no matter what moves Rosencrans and Gildenstern make.
Hence, Rosencrans will win for all odd n ≥ 5, as desired.
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5/1/32. Find all pairs of rational numbers (a, b) such that 0 < a < b and aa = bb.

Solution

We claim that all pairs of the form (a, b) =

((
n

n + 1

)n+1

,

(
n

n + 1

)n
)
, where n is a

positive integer, satisfy 0 < a < b and aa = bb, and that these are the only pairs which
satisfy these conditions.

First, we show that all such pairs satisfy the given conditions. Fix a positive integer n,

and set a =

(
n

n + 1

)n+1

and b =

(
n

n + 1

)n

. Since 0 <
n

n + 1
< 1, it follows that 0 < a < b.

Also, we have

aa =

(
n

n + 1

)n+1·( n
n+1)

n+1

=

(
n

n + 1

) nn+1

(n+1)n

=

(
n

n + 1

)n·( n
n+1)

n

= bb.

Thus, all pairs of the form (a, b) =

((
n

n + 1

)n+1

,

(
n

n + 1

)n
)

satisfy the given conditions,

and it remains to show these are the only pairs which do.

Now, we show that these are the only pairs which satisfy these conditions. Suppose

a and b are rational numbers such that 0 < a < b and aa = bb. Then
b

a
is also a rational

number; suppose its reduced form is
m

n
(so that m,n are positive integers with gcd(m,n) = 1

and m > n). Then we can write b =
m

n
· a, and since aa = bb, we can substitute to get

aa =
(m
n
· a
)m

n
·a
. From here, we can solve for a. Taking the positive ath root of both sides,

we get

a =
(m
n
· a
)m

n
.

Then, by distributing the right-hand side and dividing by a
m
n , we get

a1−
m
n =

(m
n

)m
n
,

so

a =
(m
n

) m
n−m

.

Note that because m > n and gcd(m,n) = 1, it follows that n−m is a negative integer that
has no common factors with m (except 1).
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We claim that a is rational if and only if m− n = 1: First, if m− n = 1, then

a =
(m
n

) m
n−m

=
( n

m

)m
is rational. Now, let m − n = k, where k > 1 is a positive integer.

We claim that a cannot be rational. Suppose for the sake of contradiction that a is rational.

It follows that a =
(m
n

) m
−k

=

(
nm

mm

) 1
k

. Since gcd(m,n) = 1 and a is rational, both m and

n are perfect kth powers. But this is impossible: suppose that m = xk, n = yk, and that
m− n = xk − yk = k. We know that x > y (as m > n), and so by the Binomial Theorem we
get

k = xk − yk ≥ (y + 1)k − yk ≥ (yk + ky + 1)− yk = ky + 1 ≥ k + 1,

which is a contradiction.

Therefore, if a is rational, then m − n = 1. Since we assumed a is a rational number
satisfying our conditions, it then follows that m− n = 1, and so

a =
( n

m

)m
=

(
n

n + 1

)n+1

and

b =
m

n
· a =

n + 1

n
·
(

n

n + 1

)n+1

=

(
n

n + 1

)n

,

as desired.
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