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101/3/29. Fill in each cell of the grid with a positive digit so
that the following conditions hold:

1. each row and column contains five distinct digits;

2. for any cage containing multiple cells of a row,
the label on the cage is the GCD of the sum of the
digits in the cage and the sum of the digits in the
whole row; and

3. for any cage containing multiple cells of a column,
the label on the cage is the GCD of the sum of the
digits in the cage and the sum of the digits in the
whole column.

You do not need to prove that your answer is the only one possible; you merely need to
find an answer that satisfies the constraints above. (Note: In any other USAMTS problem,
you need to provide a full proof. Only in this problem is an answer without justification
acceptable.)

Solution
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2/3/29. Let q be a real number. Suppose there are three distinct positive integers a, b, c such
that q + a, q + b, q + c is a geometric progression. Show that q is rational.

Solution

Since q + a, q + b, q + c is a geometric progression,

(q + b)2 = (q + a)(q + c).

Expanding, we get q2 + 2bq + b2 = q2 + (a+ c)q + ac, so

(a− 2b+ c)q = b2 − ac.

Suppose that a − 2b + c = 0. Then we must have b2 − ac = 0, so a + c = 2b and b2 = ac.*
Squaring the equation a+ c = 2b, we get

a2 + 2ac+ c2 = 4b2,

so a2 + 2ac+ c2 = 4ac, which implies a2 − 2ac+ c2 = 0. We can factor this as (a− c)2 = 0,
so a = c. This is a contradiction, because we are told that a and c are distinct, so a− 2b+ c
cannot be 0.

We can then safely divide both sides of (a− 2b+ c)q = b2 − ac by a− 2b+ c to get

q =
b2 − ac

a− 2b+ c
.

Since a, b, and c are integers, q is rational.

* You may notice that this means that b is both the arithmetic mean (AM) and geometric
mean (GM) of a and c. By the famous AM-GM inequality, this means that a = c.
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3/3/29. Let ABC be an equilateral triangle with side length 1. Let A1 and A2 be the trisection
points of AB with A1 closer to A, B1 and B2 be the trisection points of BC with B1 closer to
B, and C1 and C2 be the trisection points of CA with C1 closer to C. Grogg has an orange
equilateral triangle the size of triangle A1B1C1. He puts the orange triangle over triangle
A1B1C1 and then rotates it about its center in the shortest direction until its vertices are
over A2B2C2. Find the area of the region that the orange triangle traveled over during its
rotation.

Solution

The diagrams below show the initial position of the triangle, the final position of the triangle,
and the region swept by the triangle, respectively. Note that the vertices of the triangle trace
arcs of circles.

Let O be the center of equilateral triangle ABC.

By symmetry, triangles OA1A2, OA2B1, OB1B2, OB2C1, OC1C2, and OC2A1 are all equi-
lateral, and they are all congruent with side length A1A2 = 1/3.

Note that OA1C2C1 is a rhombus, so A1C1 is perpendicular to OC2. Similarly, A1O is per-
pendicular to A2C2. This means that the intersection of A1C1 and A2C2, namely P, is the
center of equilateral triangle OA1C2. So 1/3 of triangle OA1C2 is not included in the region.
The same holds for triangles OA2B1 and OB2C1.

Additionally, OA1A2 is a circular sector with a radius of 1/3 and a central angle of 60◦. The
same holds for sectors OB1B2 and OC1C2. So, in total the region consists of two-thirds of
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three equilateral triangles with side length 1
3

and three circular sectors with radius 1/3 and
central angle 60◦. Therefore, the area of the region is
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4/3/29. A positive integer is called uphill if the digits in its decimal representation form an
increasing sequence from left to right. That is, a number a1a2 · · · an is uphill if ai ≤ ai+1 for
all i. For example, 123 and 114 are both uphill. Suppose a polynomial P (x) with rational
coefficients takes on an integer value for each uphill positive integer x. Is it necessarily true
that P (x) takes on an integer value for each integer x?

Solution (Problem proposed by Nikolai Beluhov)

We claim that it is not true that P (x) necessarily takes on an integer value for each integer
x. To show this, we will construct a polynomial with rational coefficients that takes on an
integer value for each uphill positive integer, but does not take on an integer value for every
integer input x.

Consider the sequence b0 = 1, b1 = 11, b2 = 111, . . . . Every uphill integer can be written as
a sum of at most nine of the bi (possibly with repeats). These numbers inspire us to think
modulo 11. If i is even, then bi ≡ 1 (mod 11). If i is odd, then bi ≡ 0 (mod 11). This means
that adding nine of these numbers together, we can never get a number that is congruent
to 10 modulo 11. Hence, no uphill integer is congruent to 10 modulo 11.

So, if we can construct a polynomial that gives an integer exactly when the input is not 10
modulo 11, we will be done. To that end, we think of Fermat’s Little Theorem. We know
that (x− 10)10 ≡ 1 (mod 11) unless x is equivalent to 10 modulo 11. So, the polynomial

P (x) =
(x− 10)10 − 1

11

takes on an integer value for any integer input that is not 10 modulo 11. However, it is
never an integer when the input is equivalent to 10 modulo 11, because the numerator is not
divisible by 11. Therefore, P (x) takes on an integer value for each uphill positive integer,
but does not take on an integer value for every integer input x, as desired.

Note from proposer: A positive integer is called downhill if the digits in its decimal
representation form a nonstrictly decreasing sequence from left to right. Suppose that a
polynomial P (x) with rational coefficients takes on an integer value for each downhill posi-
tive integer x. Is it necessarily true that P (x) takes on an integer value for each integer x?

Surprisingly, the downhill problem is a lot more difficult than the uphill one. Here is a
sketch of one of its solutions. First off, prove that if n is large enough then there exists some
remainder r modulo 2n such that no downhill positive integer is congruent to r modulo 2n.
Then consider the rational-coefficient polynomial

P (x) =
(x− r + 1)(x− r + 2) · · · (x− r + 2n − 1)

2 · (2n − 1)!
.

It takes on an integer value for each downhill positive integer x, and yet P (r) = 1
2
.
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5/3/29. Let n be a positive integer. Aavid has a card deck consisting of 2n cards, each colored
with one of n colors such that every color is on exactly two of the cards. The 2n cards are
randomly ordered in a stack. Every second, he removes the top card from the stack and
places the card into an area called the pit. If the other card of that color also happens to be
in the pit, Aavid collects both cards of that color and discards them from the pit.

Of the (2n)! possible original orderings of the deck, determine how many have the following
property: at every point, the pit contains cards of at most two distinct colors.

Solution

First, we’ll assume that the order of the appearance of the first copy of each color is 1, 2, . . . , n
(and hence we’ll multiply by n! at the end). That is, we assume that color 1 is the first color
to appear, then color 2 is the second unique color we see, color 3 is the third unique color,
etc. We will also assume that the two cards of the same color are identical (and hence we’ll
multiply by 2n at the end).

Suppose the stream of cards is s1, s2, . . . , s2n. After each card sj is placed:

• If j is odd, there is exactly one card in the pit.

• If j is even, there are either zero or two cards in the pit.

Suppose we’re at the odd position s2k−1 where k < n. Then, we have three ways to deal out
the next two cards to get to s2k+1. To see this, suppose that ` is the color of the lone card
in the pit at s2k−1, and m is the smallest unused color. Then, we can deal out the next two
cards as (`,m), (m, `), or (m,m). For example, the sequence must start in one of these three
patterns:

1, 1, 2

1, 2, 1

1, 2, 2

After s2n−1 there is only one way to deal out the last card. Therefore, since we have 3
choices for what to deal at each of s1, s3, . . . , s2n−3, we have 3n−1 ways to deal out the cards.

Accounting for our earlier simplifications, we have a total of 2n · n! · 3n−1 ways to order the
deck.
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