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1/3/28. Fill in each square of the grid with a number from 1 to 16,
using each number exactly once. Numbers at the left or top give
the largest sum of two numbers in that row or column. Numbers
at the right or bottom give the largest difference of two numbers in
that row or column.

You do not need to prove that your answer is the only one possible; you merely need to
find an answer that satisfies the constraints above. (Note: In any other USAMTS problem,
you need to provide a full proof. Only in this problem is an answer without justification
acceptable.)

Solution
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73 9 2 4

1 12 11 16

8 15 14 7

5 13 10 6
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2/3/28. Malmer Pebane, Fames Jung, and Weven Dare are perfect logicians that always tell
the truth. Malmer decides to pose a puzzle to his friends: he tells them that the day of his
birthday is at most the number of the month of his birthday. Then Malmer announces that
he will whisper the day of his birthday to Fames and the month of his birthday to Weven,
and he does exactly that.

After Malmer whispers to both of them, Fames thinks a bit, then says “Weven cannot know
what Malmer’s birthday is.”

After that, Weven thinks a bit, then says “Fames also cannot know what Malmer’s birthday
is.”

This exchange repeats, with Fames and Weven speaking alternately and each saying the other
can’t know Malmer’s birthday. However, at one point, Weven instead announces “Fames and
I can now know what Malmer’s birthday is. Interestingly, that was the longest conversation
like that we could have possibly had before both figuring out Malmer’s birthday.”

Find Malmer’s birthday.

Solution

We imagine that Fames and Weven are each given a number between 1 and 12 (representing
either the day or the month of Malmer’s birthday respectively).

We analyze what happens at the first step, when Fames claims “Weven cannot know what
Malmer’s birthday is.” Since Weven is given the month, and the day can be any number less
than or equal to the month, he could only know Malmer’s birthday if he were given a 1 (as
this would imply Malmer’s birthday was 1/1). So, Weven must not have a 1. In order for
Fames to know that Weven doesn’t have a 1, Fames also must not have a 1. So, we conclude
that neither Fames nor Weven was given a 1.

Next, Weven claims that “Fames also cannot know what Malmer’s birthday is.” Since Fames
is given the day, and the month can be any number greater than or equal to the day, he could
only know Malmer’s birthday if he were given a 12 (as this would imply Malmer’s birthday
was 12/12). So, Fames must not have a 12. In order for Weven to know that Fames doesn’t
have a 12, he also must not have a 12. So, we conclude that neither Fames nor Weven was
given a 12.

Similarly, if this exchange were to happen again, Fames’s statement would allow us to con-
clude that neither Fames nor Weven was given a 2, and Weven’s statement would allow us
to conclude that neither Fames nor Weven was given an 11.
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In order for this to continue for as long as possible, both players must continue to eliminate
numbers until Fames eliminates 6. Once this happens, both players know that only 7 is

possible, and Malmer’s birthday is (7, 7) (July 7th).
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3/3/28. An n-city is an n× n grid of positive integers such that every entry greater than 1 is
the sum of an entry in the same row and an entry in the same column. Shown below is an
example 3-city. 1 1 2

2 3 1
6 4 1


(a) Construct a 5-city that includes some entry that is at least 150. (It is acceptable simply

to write the 5-city. You do not need to explain how you found it.)

(b) Show that for all n ≥ 1, the largest entry in an n-city is at most 3(n
2).

Solution

(a) An example of a 5-city with an entry that is at least 150 is shown below. You may
have found a different example.

1 2 5 3 4
26 1 6 25 10
67 69 1 15 12
326 259 138 1 11
52 121 127 26 1


(b) An n-city must have at least one 1 in every row and column. So an n-city must have

at least n 1’s, and hence can have at most n2 − n = 2
(
n
2

)
entries greater than 1. Let

us list these entries as a1, a2, . . . , a2(n
2)

from least to greatest.

Notice that a1 can be at most 1 + 1 = 2. Then a2 can be at most a1 + 1 = 3, and a3
can be at most a2 + a1 = 3 + 2 = 5. In general, we see that ak is at most ak−1 + ak−2.
Hence, we conclude that ak ≤ Fk+2 for all k, where Fm is the m-th Fibonacci number.

Therefore, we have a2(n
2)
≤ F2(n

2)+2. So, it suffices to show that F2(n
2)+2 ≤ 3(n

2).

To that end, we claim that F2m+2 ≤ 3m for all m ≥ 0. For m = 0 both sides of the
inequality are 1. Then,

F2m+2 = F2m+1 + F2m

= 2F2m + F2m−1

≤ 3F2m.

Hence, by induction F2m+2 ≤ 3(3m−1) = 3m. Thus,

a2(n
2)
≤ F2(n

2)+2 ≤ 3(n
2).
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So, every entry in an n-city is at most 3(n
2) as desired.
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4/3/28. Let A1, . . . , An and B1, . . . , Bn be sets of points in the plane. Suppose that for all
points x,

D(x,A1) + D(x,A2) + · · ·+ D(x,An) ≥ D(x,B1) + D(x,B2) + · · ·+ D(x,Bn),

where D(x, y) denotes the distance between x and y. Show that the Ai’s and the Bi’s share
the same center of mass.

Solution

Lemma: If a > b, then
√
a2 + b2 − a ≤ b2

2a
.

Proof of Lemma: We see that

a2 + b2 ≤ b4

4a2
+ a2 + b2,

and both sides are positive. Taking the square root of both sides, we get

√
a2 + b2 ≤ b2 + 2a2

2a
.

Subtracting a from both sides gives the desired claim. �

Suppose that the centers of mass of the Ai and Bi are MA and MB respectively, and that
d is a real number with D(Ai,MA) ≤ d and D(Bi,MB) ≤ d for all i. Let D(MA,MB) = `,
and suppose for the sake of contradiction that ` > 0. Choose a real number q such that

q > d +
d2

2`
.

Let P be the point on line MAMB with D(P,MA) = q and D(P,MB) = q + `. We claim
that

D(P,A1) + D(P,A2) + · · ·+ D(P,An) < D(P,B1) + D(P,B2) + · · ·+ D(P,Bn).

For each i, let A′i be the projection of Ai onto line MAMB, and similarly define B′i. We see
that PA′iAi is a right triangle with hypotenuse PAi, so applying the Pythagorean Theorem
gives us D(P,Ai)

2 = D(P,A′i)
2 + D(A′i, Ai)

2. Since A′i is the closest point to Ai on the line
MAMB, we have D(Ai, A

′
i) ≤ D(Ai,MA) ≤ d. So, D(P,Ai)

2 ≤ D(P,A′i)
2 + d2. For brevity,

let ui = D(P,Ai) and vi = D(P,A′i) for each i. We rewrite our inequality as u2
i ≤ d2 + v2i .

Thus, ui ≤
√

d2 + v2i , and ui − vi ≤
√

d2 + v2i − vi. Applying the Lemma gives us

ui − vi ≤
d2

2vi
.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 3 Solutions

Year 28 — Academic Year 2016–2017
www.usamts.org

Applying the Triangle Inequality to triangle PA′iMA, we get
D(P,A′i) +D(A′i,MA) ≥ D(P,MA). Since D(A′i,MA) ≤ D(Ai,MA) ≤ d, we have vi + d ≥ q.
Combining this inequality with the inequality q > d + d2

2`
and subtracting d, we get

vi ≥ q − d > d2

2`
.

Applying the inequality vi > d2

2`
to the right side of the inequality ui − vi ≤ d2

2vi
, we get

ui − vi < `. So, ui < vi + `. And since
∑n

i=1 vi = nq by D(P,MA) = q and the definition of
the center of mass, we have

∑n
i=1 ui < nq + n`.

We also have D(P,Bi) ≥ D(P,B′i), so

n∑
i=1

D(P,Bi) ≥
n∑

i=1

D(P,B′i) = nD(P,MB) = nq + n`.

Therefore,
n∑

i=1

D(P,Ai) < nq + n` ≤
n∑

i=1

D(P,Bi).

This is a contradiction of the condition, so ` = 0 as desired.
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5/3/28. Consider the set S = {q + 1
q
, where q ranges over all positive rational numbers}.

(a) Let N be a positive integer. Show that N is the sum of two elements of S if and only
if N is the product of two elements of S.

(b) Show that there exist infinitely many positive integers N that cannot be written as the
sum of two elements of S.

(c) Show that there exist infinitely many positive integers N that can be written as the
sum of two elements of S.

Solution

(a) Note that the “right side implies left side” implication is true even without the require-
ment that N is an integer. Indeed, assume that N = (q+ 1

q
) · (r+ 1

r
), with q, r rational.

By expanding the product, we obtain:

N = qr +
1

qr
+

q

r
+

r

q
=

(
x +

1

x

)
+

(
y +

1

y

)
, where x = qr and y =

q

r
are rational.

We now show that the converse is true. Let N be an integer such that

N = (x +
1

x
) + (y +

1

y
),

where x, y are positive rational numbers. We can write x, y as irreducible fractions
x = a

b
and y = c

d
, with a, b, c, d positive integers satisfying gcd(a, b) = gcd(c, d) = 1.

After expanding the formula for N we obtain:

N =
(a2 + b2)cd + (c2 + d2)ab

abcd
.

Since N is an integer, it follows that ab must divide the numerator. Thus, ab must
divide (a2 + b2)cd. Since gcd(a, b) = 1, it follows that gcd(ab, a2 + b2) = 1. So, we
must have that ab divides cd. Similarly, by using the fact that cd must also divide the
numerator of the fraction, we obtain that cd divides ab. It follows ab = cd. Note now
that if we let p = c

b
and q = a

c
, then we have:(

p +
1

p

)(
q +

1

q

)
=

(
c

b
+

b

c

)(a
c

+
c

a

)
=

a

b
+

b

a
+

c2

ab
+

ab

c2

=
a

b
+

b

a
+

c

d
+

d

c

=

(
x +

1

x

)
+

(
y +

1

y

)
= N.
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We used above the equality c2

ab
= c

d
, which is equivalent to ab = cd.

Remark. Another way to finish the proof from ab = cd is to argue that there must
exist positive integers s, t, u, v such that a = st, b = uv, c = su, and d = tv. It follows
that N = ( s

v
+ v

s
)( t

u
+ u

t
).

(b) We show that if N is an integer divisible by 8, then it is not possible to write N as the
sum of two elements of S. Equivalently, it suffices to show that N is not the product
of two elements of S. (It is somewhat faster to work with the product than the sum.)
Assume N = (a

b
+ b

a
) · ( c

d
+ d

c
), where a, b, c, d are positive integers such that a

b
and c

d

are irreducible, positive fractions. After expanding the product, we obtain

(a2 + b2) · (c2 + d2)

abcd
= N.

Since N is divisible by 8, it follows that 8 must divide the numerator (a2+b2) ·(c2+d2).
Thus, at least one of the two factors of the product must be divisible by 4. Assume for
instance that 4 divides a2 + b2. By considering all the possibilities for a, b (mod 4), it
is easy to see that a, b must both be even. However, this contradicts the fact that the
fraction a

b
is irreducible.

Remark. Another option is to show that if N has a prime factor p with p ≡ 3
(mod 4), then N cannot be written as the product of two elements of S.

(c) We show that there exist infinitely many integers N of the form N = (a + 1
a
)(b + 1

b
),

with a, b positive integers. Note that this statement is stronger than the statement of
(c). We have: (

a +
1

a

)
·
(
b +

1

b

)
=

a2 + 1

b
· b

2 + 1

a
.

We construct recursively infinitely many pairs of integers (a, b), with a < b and such
that a divides b2 + 1, and b divides a2 + 1. First, observe that the pair (1, 2) works.
Now, assuming that (a, b) satisfies the requirements, we show that (b, b

2+1
a

) also works.

Indeed, if we let c = b2+1
a

, then we know that c is an integer. The fact that b < c is
equivalent to ab < b2 + 1, which is true since a < b. The fact that c divides b2 + 1
follows from b2 +1 = ac. Finally, the fact that b divides c2 +1 is equivalent to b divides
(b2+1)2+a2

a2
. This is true because (b2 + 1)2 + a2 ≡ 1 + a2 ≡ 0 (mod b), and gcd(a, b) = 1.

Remark. The first few pairs obtained through our construction are (1, 2), (2, 5), (5, 13), ....
The corresponding values of N are 5, 13, 68, . . ..
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