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1/2/27. In the grid to the right, the shortest path through unit squares between the pair of
2’s has length 2. Fill in some of the unit squares in the grid so that

6
10 1

2 8
5 2

7 9
3

(i) exactly half of the squares in each row and column
contain a number,

(ii) each of the numbers 1 through 12 appears exactly
twice, and

(iii) for n = 1, 2, . . . , 12, the shortest path between
the pair of n’s has length exactly n.

You do not need to prove that your answer is the only one possible; you merely need to
find an answer that satisfies the constraints above. (Note: In any other USAMTS problem,
you need to provide a full proof. Only in this problem is an answer without justification
acceptable.)

Solution

In this solution, we use the notation RiCj to denote the square in row i and column j. For
example, the given 5 is in R4C2.

The larger numbers give us the strongest restrictions, so we examine them first.

11 6 12

10 1

2 8

5 2

7 9

12 3 11 10

The only pairs of squares that are a distance of 12 apart are
the two pairs of diagonally opposite corners (R1C1, R6C8)
and (R1C8, R6C1). However, the only square a distance of
10 from the given 10 is R6C8. So the 10 must be placed there.
Thus, we can place the 12’s in the corners (R1C8, R6C1).

For the pair of 11’s to be a distance of 11 apart, one of them
must be in a corner. Since three corners are already taken, we
place an 11 in the remaining corner, R1C1. The two squares
that are a distance of 11 from this are R5C8 and R6C7. Since column 8 already contains 12,
8, and 10, we cannot place any more numbers in that column and we must place the 11 in
R6C7.
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11 7 6 12

9 10 1

2 8

5 2

8 7 9

12 3 11 10

Next we resolve the 9, 8, and 7. There are two possible posi-
tions for the 7: it can be either in R3C1 or R1C3. Similarly,
the remaining 8 can be placed in R4C1, R6C3, or R5C2 and
the remaining 9 can be placed in R2C1 or R1C2. The 8 can-
not be placed in R6C3 because row 6 already contains 12, 3,
11, and 10. So all possible positions for the non-given 8 and
9 are in columns 1 and 2. This means that columns 1 and 2
will each contain 3 numbers after the 8 and 9 are placed. So
we cannot place the 7 in column 1, as this would force column 1 to contain 4 numbers. So
we place the 7 in R1C3. This means that row 1 contains four numbers and we must place
the 9 in R2C1. Once the 9 is placed, column 1 contains three numbers and we must place
the 8 in R5C2.

Now we are forced to place the 6 in R5C3. This forces us to place the 1 in R2C4. The only
way to place two more numbers in row 3 is to place the 5 in R3C6 and the 4 in R3C7. We
conclude by placing the remaining 4 in R4C4 and the remaining 3 in R4C6.

11 7 6 12

9 10 1 1

2 5 4 8

5 4 2 3

8 6 7 9

12 3 11 10
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2/2/27. A net for a polyhedron is cut along an edge to give two pieces. For example, we may
cut a cube net along the red edge to form two pieces as shown.

Are there two distinct polyhedra for which this process may result in the same two pairs of
pieces?

Solution

The answer is yes and there are many possible solutions. We present one here.

We start with a cube and glue square pyramids on two of its faces. There are two distinct
ways to do this: the two pyramids can replace either adjacent faces or opposite faces. We
show that we can find nets for each of these polyhedra that produce the same pair of polygons.

In the diagram below, we replace two opposite faces in the cube net with square pyramids,
then cut the resulting net along the red edge to produce two polygons.

In the diagram below, we replace two adjacent faces in the cube net with square pyramids,
then cut the resulting net along the red edge to produce two polygons.
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3/2/27. For all positive integers n, show that

1

n

n∑
k=1

k · k! ·
(
n
k

)
nk

= 1.

Solution 1

Fix n. Let

Sr =
n∑

k=n−r

k · k! ·
(
n
k

)
nk

be the sum of the last r + 1 terms of the given sum. We claim that

Sr =
n!

r!nn−r−1 .

For r = 0, notice that we can write the last term in the sum as

n · n! ·
(
n
n

)
nn

=
n · n!

nn
=

n!

0!nn−1 .

So the claim holds for r = 0. Now suppose the claim holds for r = m− 1 and we will show
that it’s true for r = m (assuming m < n).

The sum of the last m + 1 terms is the sum of the last m terms, plus the (m + 1)st term
from the end. That is,

Sm = Sm−1 +
(n−m)n!/m!

nn−m .

By the inductive hypothesis, the sum of the last m terms is

Sm−1 =
n!

(m− 1)!nn−m .

So the sum of the last m + 1 terms is

Sm =
n!

(m− 1)!nn−m +
(n−m)n!/m!

nn−m =
n!(n−m) + n! ·m

(m)!nn−m

=
n! · n

m!nn−m

=
n!

m!nn−m−1 .

Therefore, for all r < n, the sum of the last r + 1 terms is n!
r!nn−r−1 . Substituting r = n− 1,

we have
n∑

k=1

k · k! ·
(
n
k

)
nk

=
n!

(n− 1)!nn−(n−1)−1

=
n

n0
= n.

Dividing through by n gives the result.
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Solution 2

Suppose we roll an n-sided die repeatedly until we roll any number for the second time. We
calculate the probability that the first repeat is on the (k + 1)st roll.

In order for the (k + 1)st roll to be the first repeat, the previous k rolls must have all been
distinct. The number of sequences of k distinct rolls is k!

(
n
k

)
, because we can choose any

k numbers from our die to show up and place them in any order. Since there are nk total

sequences of k rolls, the probability that the first k rolls are distinct is
k!(n

k)
nk . Since the

(k + 1)st roll is a repeat, it must be one of the k numbers already seen. The probability of
this happening is k

n
. In total, the probability that our (k + 1)st roll is the first repeat is

k

n
·
k!
(
n
k

)
nk

=
k · k! ·

(
n
k

)
nk+1

.

Summing over all k ≤ n, we find that the probability that we have at least one repeat after
n + 1 rolls is

n∑
k=1

k · k! ·
(
n
k

)
nk+1

.

Since we’re rolling an n-sided die, we’re guaranteed to have a repeat by the (n + 1)st roll.
In particular,

n∑
k=1

k · k! ·
(
n
k

)
nk+1

= 1.

Factoring an n out of the denominator, we have

1

n

n∑
k=1

k · k! ·
(
n
k

)
nk

= 1.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 2 Solutions

Year 27 — Academic Year 2015–2016
www.usamts.org

4/2/27. Find all polynomials P (x) with integer coefficients such that, for all integers a and b,
P (a + b)− P (b) is a multiple of P (a).

Solution

Fix an integer b and write H(x) = P (x + b) − P (b). If H is identically 0, then P (x) is a
constant function. Substituting P (x) = c, the condition says that c divides 0, which is true.
So constant functions work. For the remainder, we will assume that P (x) is non-constant.
In that case, H(x) and P (x) have the same leading term, so we can write

H(x) = P (x) + r(x),

where r(x) is either identically 0 or deg r(x) < degP (x). For any integer a, we have that
H(a) = P (a) + r(a) is a multiple P (a). In particular, for any integer a, r(a) is a multiple of
P (a).

The degree of r(x) is less than the degree of P (x) (or r(x) is identically 0), so we can choose
some M such that for all integers a ≥ M , |P (a)| > |r(a)|. Since r(a) is a multiple of P (a)
for each such a, this implies that r(a) = 0 for all integers a ≥ M . Therefore, r(x) is a
polynomial with infinitely many zeros, and must be identically 0. Hence H(x) = P (x) and

P (x + b)− P (b) = P (x).

Since b was an arbitrary integer, this equation holds for all integers b and real numbers x.
Plugging in x = b = 0 yields P (0) = 0. Plugging in x = 1, b = 1 gives us P (2) = 2P (1).
Then plugging in x = 2, b = 1 gives us P (3) = 2P (1) + P (1) = 3P (1). Continuing this way
by induction, plugging in x = k, b = 1 gives us

P (k + 1) = kP (1) + P (1) = (k + 1)P (1).

Therefore, P (x)− xP (1) is a polynomial with infinitely many zeros, and must be identically
0. So if P (x) is not constant, P (x) = xP (1) is a linear function with no constant term.

Therefore, the only non-constant solution is P (x) = cx for some constant c. Substituting
P (x) = cx, the given condition says that ca + cb− cb = ca is a multiple of ca, which is true.

So both of these classes of functions work and our solution is P (x) = cx or P (x) = c for
some integer c.

Note: We ended up deriving an equation of the form P (x + b) = P (x) + P (b). This is a
version of Cauchy’s functional equation. It turns out that if a function f : Q → Q satisfies
f(x + y) = f(x) + f(y) for all x and y, then it must be of the form f(x) = cx. The proof
is similar to what we did above, except we can no longer take advantage of the fact that we
know f is a polynomial.
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5/2/27. Let n > 1 be an even positive integer. A 2n× 2n grid of unit squares is given, and it
is partitioned into n2 contiguous 2× 2 blocks of unit squares. A subset S of the unit squares
satisfies the following properties:

(i) For any pair of squares A,B in S, there is a sequence of squares in S that starts with
A, ends with B, and has any two consecutive elements sharing a side; and

(ii) In each of the 2× 2 blocks of squares, at least one of the four squares is in S.

An example for n = 2 is shown below, with the squares of S shaded and the four 2×2 blocks
of squares outlined in bold.

In terms of n, what is the minimum possible number of elements in S?

Solution

The answer is 3
2
n2 − 2. Let n = 2k and we will show that the minimum number of elements

in S is 6k2 − 2. We begin with a Lemma.

Lemma: Let k be a positive integer. If we have a (2k + 1) × (2k + 1) grid of squares, with
some squares shaded so that all shaded squares are connected by side, as in condition (i) in
the problem, and no 2× 2 subgrid is entirely unshaded, then the number of shaded squares
is at least 2k2 − 1.

Proof: Place the (2k + 1) × (2k + 1) grid on the coordinate plane with each square having
area 1. The shaded squares together form a polygon whose area is equal to the total number
of shaded squares. Since no 2 × 2 subgrid is unshaded, all of the interior vertices of the
grid are inside or on the boundary of the polygon; there are 4k2 such vertices. By Pick’s
Theorem, we have that the area is B

2
+ I − 1 where B is the number of boundary vertices

and I is the number of interior vertices. As B + I ≥ 4k2, we have

B

2
+ I − 1 ≥ B + I

2
− 1 ≥ 4k2

2
− 1 = 2k2 − 1,

as desired. �

Let S be a valid subset of the original grid, and we will show that it contains at least 6k2−2
squares. Consider the set of vertices of the n2 blocks of 2× 2 squares.
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There are (2k + 1)2 such vertices. Construct a (2k + 1) × (2k + 1) grid G of squares so
that each square corresponds to one of these (2k + 1)2 vertices. Shade a square in G if the
corresponding vertex touches a square of S. An example of such a grid and shading is shown
below.

By (i), the shaded squares in G are connected by side, and by (ii) no 2×2 block of squares in
G can be fully unshaded. Therefore, by the lemma we have at least 2k2 − 1 shaded squares
in G.

Next, construct a graph G′ as follows: the vertices correspond to the shaded squares in G.
Whenever we have two adjacent squares in the same 2× 2 block both in S, we draw an edge
in G′ connecting the two vertices that the two squares in S touch. An example graph is
shown below.

By (i), G′ is a connected graph. Let S(G′) be a spanning tree of G′. Since G′ has at least
2k2 − 1 vertices, we know that S(G′) has at least 2k2 − 2 edges.

Notice that each edge in S(G′) corresponds to two unit squares in the same 2× 2 block both
being shaded. Since S(G′) contains no cycles, each edge corresponds to a unique such pair
of unit squares. We use this to place a lower bound on the total number of shaded squares
in the original grid.

In the original grid, we require at least one shaded square in each of the 4k2 blocks. Also,
an additional shaded square in the original grid is required for each edge of S(G′). There
are at least 2k2 − 2 edges in S(G′), so in total we have at least 6k2 − 2 shaded squares.
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We now exhibit a construction of 6k2 − 2 shaded squares. In the accompanying diagrams,
we demonstrate the construction for n = 4. Number the rows and columns from 1 to 4k,
and denote the square in row i column j as (i, j). Shade in the 4k − 2 squares (i, 2) for
2 ≤ i ≤ 4k − 1.

Next, for the k values of i with 1 ≤ i ≤ 4k and i ≡ 2 (mod 4), shade in 4k− 3 squares (i, j)
for 3 ≤ j ≤ 4k − 1.

Finally, shade in k(2k− 1) squares of the form (2i− 1, 4j− 1), for 2 ≤ i ≤ 2k and 1 ≤ j ≤ k.

The total number of shaded squares is

4k − 2 + k(4k − 3) + k(2k − 1) = 4k2 − 3k + 4k − 2 + 2k2 − k = 6k2 − 2 =
3

2
n2 − 2,

as desired.
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