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1/1/27. Fill in the spaces of the grid to the right with positive
integers so that in each 2× 2 square with top left number a, top
right number b, bottom left number c, and bottom right number
d, either a + d = b + c or ad = bc.

You do not need to prove that your answer is the only one pos-
sible; you merely need to find an answer that satisfies the con-
straints above. (Note: In any other USAMTS problem, you need
to provide a full proof. Only in this problem is an answer without
justification acceptable.)

Solution

Consider the following 2× 2 square

a

c

b

d

and suppose a < c. By hypothesis, we must have either a+d = b+ c or ad = bc. Either way,
it follows that b < d. Since 9 < 11, repeatedly applying this observation tells us that every
number in the top row is less than the number directly below it. Similarly, every other pair
of consecutive rows must satisfy the same constraint, and we conclude that every column is
strictly increasing from top to bottom.

Given the same 2×2 configuration, if a positive integer n divides c but not ad, then we must
have a + d = b + c.

Finally, consider the following 3× 2 configuration:

a

b

c

d

e

f

In this case, we claim that if gcd(a, b) = 1 and b−a > d−c, then we must have a+f = b+e.
To see this, let b = a + k and suppose af = be. This can be rearranged to a(f − e) = ke, or

a

b− a
=

e

f − e
.

Since a and b−a are relatively prime, we conclude that f−e ≥ b−a and e ≥ a. This implies
that we must have fc = ed. Rewriting e as af

b
yields ad = bc, and by the same argument we

have d− c ≥ b− a, a contradiction. So we must have a + f = b + e.

Combining these observations with a little trial-and-error, one can construct the following
unique solution.
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2/1/27. Suppose a, b, and c are distinct positive real numbers such that

abc = 1000,

bc(1− a) + a(b + c) = 110.

If a < 1, show that 10 < c < 100.

Solution

By adding the two equations we have ab+ ac+ bc = 1110. So a, b, and c are the roots of the
polynomial

f(x) = (x− a)(x− b)(x− c) = x3 − dx2 + 1110x− 1000,

where d > 0. We compare this to the polynomial

g(x) = (x− 1)(x− 10)(x− 100) = x3 − 111x2 + 1110x− 1000.

Since a < 1, we know that g(a) < 0. Notice that g(x) − f(x) = (d − 111)x2. Since
g(a) = g(a)− f(a) < 0, we conclude that g(x)− f(x) = (d− 111)x2 is negative for all x 6= 0.
Therefore,

g(b) = g(b)− f(b) < 0

and
g(c) = g(c)− f(c) < 0.

This means that b and c are in (0, 1) ∪ (10, 100). Since abc = 1000, we see that bc > 1000,
which implies that b and c are both greater than 10. Thus, 10 < b, c < 100, as desired.

Note: This proof can be generalized. Given any two cubic polynomials differing in exactly
one coefficient and having six distinct positive roots, one can show that there are only two
possible orderings of the six roots.
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3/1/27. Let P be a convex n-gon in the plane with vertices labeled V1, . . . , Vn in counterclock-
wise order. A point Q not outside P is called a balancing point of P if, when the triangles
QV1V2, QV2V3, . . . , QVn−1Vn, QVnV1 are alternately colored blue and green, the total areas of
the blue and green regions are the same. Suppose P has exactly one balancing point. Show
that the balancing point must be a vertex of P .

Solution

Define a function f : P → R by setting

f(Q) = [QV1V2]− [QV2V3] + · · ·+ (−1)n−1[QVnV1].

That is, f(Q) is the area of the blue regions minus the area of the green regions given a fixed
point Q. We examine what happens to f as we move Q along a fixed line. To do this, we
look at the area of the triangle with base V1V2.

V1

V2

The base stays fixed and the height changes linearly as Q moves along this line. The same
is true for all other sides of P , which means that f(Q) changes linearly as Q moves along a
fixed line inside P .

Now suppose A is not a vertex and f(A) = 0. We’ll show that P contains at least one more
balancing point. In order to show this, we will consider two cases: (1) A is in the interior of
P and (2) A is on an edge of P .

Suppose first that A is in the interior of P . Take two segments `1 and `2 containing A in
their interiors inside P . If either segment contains another balancing point, we’re done. So
suppose neither does. Since f changes linearly as we move along either segment, we know
that we can find two points B and C on `1 and `2, respectively, such that f(B) and f(C)
have opposite signs.

V1

V2

B C
A

`1 `2

By convexity, we know that the segment connecting B and C is completely contained in P .
Since f changes linearly along this segment, there must be some D between B and C for
which f(D) = 0. Therefore, we have found another balancing point.
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Now suppose that A is on an edge, ViVi+1. Pick some point R inside P and consider the
segment QR. Again, if either ViVi+1 or QR contains another balancing point we’re done, so
suppose neither does. Since f changes linearly as we move along ViVi+1 and QR, we know
that we can find two points B′ and C ′ on ViVi+1 and QR, respectively, such that f(B′) and
f(C ′) have opposite signs. By convexity, we know that the segment connecting B′ and C ′ is
completely contained in P . Since f changes linearly on this segment, there must be some D′

between B′ and C ′ for which f(D′) = 0, and once again we have found another balancing
point.

Combining both of these cases, we see that if P has exactly one balancing point, it must be
a vertex.

Note: A hexagon with vertices at (0, 0), (0, 2), (1, 10), (3, 10), (4, 14/3), and (4, 8/3) has
exactly one balancing point at x = 0.

One can calculate the areas of the four triangles (from left to right) to be 1, 10, 13, and 4,
and we see that (0, 0) is indeed a balancing point.
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4/1/27. Several players try out for the USAMTS basketball team, and they all have integer
heights and weights when measured in centimeters and pounds, respectively. In addition,
they all weigh less in pounds than they are tall in centimeters. All of the players weigh at
least 190 pounds and are at most 197 centimeters tall, and there is exactly one player with
every possible height-weight combination.

The USAMTS wants to field a competitive team, so there are some strict requirements.

(i) If person P is on the team, then anyone who is at least as tall and at most as heavy
as P must also be on the team.

(ii) If person P is on the team, then no one whose weight is the same as P ’s height can
also be on the team.

Assuming the USAMTS team can have any number of members (including zero), how many
distinct basketball teams can be constructed?

Solution

We interpret players as points in the plane with coordinates (x, y) = (weight, height) and
interpret the requirements graphically. Each player is a lattice point on or within the right
triangle defined by the lines y = x + 1, x = 190, and y = 197.

(190, 191)

(196, 197)

weight

height

Requirement (i) states that if a player (a, b) is on the team, then so is everyone on or within
the rectangle above and to the left of (a, b). An example for player (192, 194) is shown below.

(190, 191)

(196, 197)

weight

height

Requirement (ii) states that if a player (a, b) is on the team, then no one on the line x = b
can be on the team. Combined with requirement (i), this additionally implies that no one to
the right of the line x = b can be on the team if a player (a, b) is on the team. An example
for player (190, 193) is shown below.
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(190, 193)

x = 193

weight

height

Notice that the red line is determined by the shortest player selected for the team on the line
x = 190. Call this player p0, and let his height be 190 + m. Then requirement (ii) tells us
that all players selected for the team are on the lines x = 190, x = 191, . . . , x = 190+(m−1).
Requirement (i) implies that the players selected for the team on the line x = 190 + k are
determined by the shortest player selected for the team on this line. Let pk be the shortest
player on the line x = 190 + k. Then it suffices to count the number of ways to select
p0, . . . , pm−1. (If there are no players selected for the team on the line x = 190+k, we simply
ignore pk, . . . , pm−1.)

To do this, draw a path containing only steps up and to the right starting at p0 and ending
at one of the m dots in the top row to the left of the line x = 190 + m, such that the lowest
point on the path with x-coordinate 190 + k is pk (if there are no players with x-coordinate
190 + k, our path will stay completely to the left of the line x = 190 + k). An example path
is shown below with p0 = (190, 193), p1 = (191, 194), and p2 = (192, 195).

(190, 193)

x = 193

weight

height

These paths correspond to teams because they determine p0, . . . , pm−1. Notice that these
paths are in one to one correspondence with paths starting at p0 that end at (189 +m, 198):
we simply remove the portion of any given path above the line y = 197. Each path from our
initial player to (189 +m, 198) must have m− 1 steps to the right and 7− (m− 1) steps up.
Thus the total number of paths from our initial player to (189 +m, 198) is

(
7

m−1

)
. Summing

over all m ≤ 7, we get
7∑

m=1

(
7

m− 1

)
= 27 − 1

paths. This corresponds to the number of teams with at least one player, so in total the
number of possible teams is 27 = 128.

Challenge: Can you give a bijective proof mapping possible teams to binary strings of 0’s
and 1’s of length 7?
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5/1/27. Find all positive integers n that have distinct positive divisors d1, d2, . . . , dk, where
k > 1, that are in arithmetic progression and

n = d1 + d2 + · · ·+ dk.

Note that d1, . . . , dk do not need to be all the divisors of n.

Solution

n = 6 works by taking d1 = 1, d2 = 2, and d3 = 3. Similarly, n = 6m works by taking
d1 = m, d2 = 2m, and d3 = 3m. We will show that these are the only possible values of n.

We’ll assume without loss of generality that d1 < d2 < · · · < dk. Then, by dividing out by
any common factor, we’ll assume that d1, d2, . . . , dk share no (non-trivial) common divisor,
making our goal to show that n = 6.

Suppose two consecutive terms di and di+1 have a common divisor r. Then r| (di+1 − di),
which is the common difference of the arithmetic sequence. This implies that r divides all
di, but we assumed that d1, d2, . . . , dk shared no common divisor, so r = 1.

Since dk and dk−1 are relatively prime and are both factors of n, we have n ≥ dkdk−1. Then,
dk ≥ k, so n ≥ kdk−1. For k ≥ 3, dk−1 is greater than or equal to the average of the di,
which means that n is at least k times the average of di. That is,

n ≥ d1 + d2 + · · ·+ dk.

In order for equality to hold, we need n = kdk−1 = dkdk−1. The first equality implies that
dk−1 is the average of the k-term arithmetic sequence, so k = 3. The second equality then
tells us that d3 = 3. That is, d1 = 1, d2 = 2, d3 = 3, and n = 6, as desired.

To conclude it now suffices to eliminate k = 2. In this case, we have n = d1 +d2 and d1 6= d2,
which means that d2 > n

2
, contradicting the fact that d2 is a divisor of n. Thus k = 2 is

impossible.
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