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1/3/25. In the hexagonal grid shown, fill in each space
with a number. After the grid is completely filled in,
the number in each space must be equal to the small-
est positive integer that does not appear in any of the
touching spaces.

You do not need to prove that your configuration is
the only one possible; you merely need to find a con-
figuration that satisfies the constraints above. (Note:
In any other USAMTS problem, you need to provide a
full proof. Only in this problem is an answer without
justification acceptable.)

Solution

4 a b 1
1 c 1 d 3

e 2 f g 6 h
i j k 7 ` m n
o 3 p q 5 r

2 s 4 t 3
3 u v 2

We label the cells a through v lexicographically as in
the diagram to the left.

The 4 in row 1 must touch a 2, but the 2 can’t be c
because c already touches a 2. Therefore, a = 2. The
4 must also touch a 3, so c = 3. Finally, b must be
at least 3, but can’t be greater than 3 because there is
no way to place a 3 in a neighboring space. Therefore,
b = 3.

The 6 in the third row must touch a 5. That 5 cannot
be ` or m because those each neighbor the 5 in the fifth
row. The 5 also cannot be d or h because there are not

enough empty spaces for d or h to neighbor all of 1, 2, 3, and 4. Therefore, g = 5. Now the
three vacant spaces touching g must have the numbers 2, 3, and 4. Since f touches a 2 and
a 3, it must be the 4. Since d touches a 3, it must be the 2. This leaves ` = 3. The progress
so far is summarized in the diagram to the right.

4 2 3 1
1 3 1 2 3

e 2 4 5 6 h
i j k 7 3 m n
o 3 p q 5 r

2 s 4 t 3
3 u v 2

Consider the 4 in the sixth row. It must touch a 3,
but the only space surrounding it that does not touch
a 3 is v, so v = 3. The 2 in row 7 must touch a 1, so
t = 1. Next, consider ` = 3. It must touch a 1 and
a 2, so m and q must have a 1 and 2 between them.
But q touches a 1, so q = 2 and m = 1. To finish the
right edge, consider the 5 in the fifth row. It must
touch a 4, so r = 4. We can quickly determine that
n = 2 and h = 4 from here.
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4 2 3 1
1 3 1 2 3

e 2 4 5 6 4
i j k 7 3 1 2
o 3 p 2 5 4
2 s 4 1 3
3 u 3 2

Our progress so far is summarized in the diagram to
the right. Next, the 7 in the center must touch the
six numbers 1 to 6 once each. We already found the
numbers 2 through 5, so k and p are 1 and 6 between
them. Notice that regardless of which of the two is the
6, the remaining vacant space it touches (either j or s)
must be a 5. In particular, this means each of j and s
is either 5 or neighbors a 1, so neither can be a 1. Since
the 3 in row 7 must touch a 1, that 1 must be u. Then
s = 5, since it now touches 1 through 4, but p 6= 5.

The 2 in row 6 must touch a 1, so o = 1. All of the
vacant spaces around i touch a 2, so i is at most 2. It
is also at least 2 since it touches a 1, so i = 2. By similar reasoning, e is a 3 and j is a 4.
Since j is not a 5, the 6 must be p, and the 1 goes in k. This completes the grid. The only
solution is the one shown below.

4 2 3 1
1 3 1 2 3

3 2 4 5 6 4
2 4 1 7 3 1 2
1 3 6 2 5 4
2 5 4 1 3
3 1 3 2
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2/3/25. Let a1, a2, a3, . . . be a sequence of positive real numbers such that akak+2 = ak+1 + 1
for all positive integers k. If a1 and a2 are both positive integers, find the maximum possible
value of a2014.

Solution

First we use the recurrence relation akak+2 = ak+1 + 1 to compute a2014 in terms of a1 and
a2, then we’ll choose values of a1 and a2 that maximize a2014.

The recurrence relation can be rewritten as

ak+2 =
ak+1 + 1

ak
.

Using this, we compute

a3 =
a2 + 1

a1

a4 =
a3 + 1

a2
=

a2+1
a1

+ 1

a2
=

a2 + a1 + 1

a1a2
,

a5 =
a4 + 1

a3
=

a2+a1+1
a1a2

+ 1
a2+1
a1

=
(a1a2 + a2 + a1 + 1)(a1)

(a1a2)(a2 + 1)
=

(a1 + 1)(a2 + 1)(a1)

(a1a2)(a2 + 1)
=

a1 + 1

a2
,

a6 =
a5 + 1

a4
=

a1+1
a2

+ 1
a2+a1+1

a1a2

=
a1+a2+1

a2
a1+a2+1

a1a2

= a1,

a7 =
a6 + 1

a5
=

a1 + 1
a1+1
a2

= a2.

Since each term of the sequence depends only on the previous two terms and we have shown
a1 = a6 and a2 = a7, we conclude that the sequence is periodic with period 5. Therefore, for
any k, we have ak = ar, where r is the remainder when k is divided by 5. So

a2014 = a4 =
a2 + a1 + 1

a1a2
=

1

a1
+

1

a2
+

1

a1a2
.

We are given that a1 and a2 are positive integers, so each term in this expression is at most
1 and the sum is at most 3. For a1 = a2 = 1, the sum is equal to 3. The maximum possible
value of a2014 is 3 from the sequence

1, 1, 2, 3, 2, 1, 1, 2, 3, 2, . . . .
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A1

A2

A3A4

A5

A6

A7

A8
A9

A10

A11

A12

A13
A14

A15

A16

A17

A18 A19

A20

3/3/25. Let A1A2A3 . . . A20 be a 20-sided polygon
P in the plane. Suppose all of the side lengths
of P are 1, the interior angle at Ai measures 108
degrees for all odd i, and the interior angle at
Ai measures 216 degrees for all even i. Prove
that that the lines A1A9, A2A12, A3A15, A4A18,
and A6A20 all intersect at the same point.

Solution

Let O be the center of P . Let B2i be the point
on the line segment A2iO such that A2iB2i has
length 1. For each i, draw segment A2iB2i and
B2iB2i+2. The resulting figure is shown below
left, with the line segments A2A8, A4A10, A5A13,
A6A16, and A7A19 in gray.

O
A1

A2

B2

A3

A4

B4

A5
A6

B6

A7

A8

B8

A9

A10

B10
A11

A12

B12

A13
A14

B14

A15
A16

B16

A17

A18

B18

A19

A20

B20

We claim that the 10 small pentagons are regular
unit pentagons. By symmetry we may check only
A2A3A4B4B2, so consider only this pentagon for
now. First note that A2B2 bisects a 216◦ angle so
∠A2 = 108◦. Since ∠A2 = ∠A3 = ∠A4 = 108◦

and ∠B4 = ∠B2, the pentagon is equiangular.
By construction, 4 edges have length 1, so all 5
edges have length 1 and the pentagon is regular.
In particular, since the pentagon is regular, the
line segments B2iB2i−2 have length 1. By sym-
metry, the inner decagon is also equiangular so
it must be regular. Specifically, each angle of the
decagon has measure 144◦.

We now claim that A2A8, A4A10, A5A13, A6A16, and A7A19 all intersect at B6.

Since B6 lies on A6O by definition, A6A16 necessarily passes through B6. If A2A8 passes
through B6, then A4A10 passes through B6, because A4A10 is the reflection of A2A8 through
A6A16. Similarly, if A5A13 passes through B6, then so does A7A19. So to solve the problem,
it suffices to show that A2A8 and A5A13 both contain B6.

Lines B4B6 and A2A8 are both perpendicular to A5A15 so are parallel (and hopefully equal).
The point B6 lies on A2A8 if and only if these lines are equal. This occurs if and only if
∠B4B6A8 = 180◦. To prove this, we first write ∠B4B6A8 = ∠B4B6B8 + ∠B8B6A8. Since
∠B4B6B8 is the interior angle of a regular decagon, its measure is 144◦. Further, 4B6B8A8

is isosceles with vertex angle 108◦, so the base angle is ∠B8B6A8 = 36◦. This forces

∠B4B6A8 = 144◦ + 36◦ = 180◦,
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and A2A8 passes through B6.

O
A1

A2

B2

A3

A4

B4

A5
A6

B6

A7

A8

B8

A9

A10

B10
A11

A12

B12

A13
A14

B14

A15
A16

B16

A17

A18

B18

A19

A20

B20

Similarly, B6B12 is parallel to A5A13, so A5A13

contains B6 if and only if B6B12A13 = 180◦. To
prove this, first write

∠B6B12A13 = ∠B6B12B10 + ∠B10B12A12

+ ∠A12B12A13.

Since ∠A12B12A13 is the smaller angle formed by
a diagonal and a side in a regular pentagon, its
measure is 36◦. Since ∠B10B12A12 is an interior
angle of a regular pentagon, its measure is 108◦.
Therefore

∠B6B12A13 = ∠B6B12B10 + 108◦ + 36◦

= ∠B6B12B10 + 144◦.

To find the measure of ∠B6B12B10, we view it as an interior angle of the quadrilateral
B6B8B10B12. The sum of the interior angles of a quadrilateral is 360◦. Two of the interior
angles of the quadrilateral are interior angles of a regular decagon, and therefore have measure
144◦. The other two angles are also equal to one another, since they are reflections of each
other about the line A9A19. So we have

144◦ + 144◦ + 2∠B6B12B10 = 360◦.

Dividing by 2 gives
∠B6B12A13 = ∠B6B12B10 + 144◦ = 180◦.

therefore A5A13 passes through B6. All 5 lines meet at B6.
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4/3/25. An infinite sequence (a0, a1, a2, . . .) of positive integers is called a ribbon if the sum
of any eight consecutive terms is at most 16; that is, for all i ≥ 0,

ai + ai+1 + · · ·+ ai+7 ≤ 16.

A positive integer m is called a cut size if every ribbon contains a set of consecutive elements
that sum to m; that is, given any ribbon (a0, a1, a2, . . .), there exist nonnegative integers
k ≤ ` such that ∑̀

i=k

ai = m.

Find, with proof, all cut sizes, or prove that none exist.

Solution

We claim that m is a cut size if and only if m is a positive multiple of 16. First we show
that any positive integer m that is not a multiple of 16 is not a cut size. We do this by
constructing counter-examples based on the highest power of 2 that divides m.

If m is odd, then m is not a sum of terms from the ribbon

2, 2, 2, 2, 2, 2, 2, 2, . . . .

Thus any cut size is even. If m is an odd multiple of 2 (meaning m ≡ 2 (mod 4)) then m is
not a sum of terms from the ribbon

3, 1, 3, 1, 3, 1, 3, 1, . . . .

Specifically, any sum of an even number of consecutive terms from this sequence is a multiple
of 4 and any odd number of terms gives an odd sum. Therefore any cut size is a multiple of
4. Likewise, the ribbon

5, 1, 1, 1, 5, 1, 1, 1, . . .

shows that any cut size must be a multiple of 8 and the period 8 ribbon

9, 1, 1, 1, 1, 1, 1, 1, . . .

shows that any cut size must be a multiple of 16.

Now we must show that for any m that is a multiple of 16, every ribbon contains a consecutive
set of terms that sums to m. Let some m = 16n be given.

Consider first all ribbons a0, a1, . . . such that each set of 8 consecutive terms gives a sum of
16:

ai + ai+1 + · · ·+ ai+8 = 16.

We call such a ribbon maximal. Given a maximal ribbon, the sum of the first 8n terms is

a0 + a1 + · · ·+ a8n = 16n = m
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showing that m can be obtained as a sum of consecutive terms from this ribbon. Now we
are left to show that m can be achieved as a sum of consecutive terms for any ribbon that
is not maximal.

For any i let si = a0 + a1 + · · · + ai be the sum of the first i + 1 terms. Since the ai are all
positive integers, si is a strictly increasing sequence of positive integers. We wish to find i, j
such that sj − si = m, which means that ai+1 + ai+2 + · · ·+ aj = m.

Since our ribbon is not maximal, there exists some k such that sk+8− sk < 16. Consider the
set T = {sk, 1 + sk, . . . 15 + sk}. Since sk+8 < 16 + sk, the nine partial sums si, si+1, . . . , si+8

are members of T . Next consider U = {m + sk,m + 1 + sk, . . .m + 15 + sk}. We will show
that at least 8 of these values are also partial sums. Let sb be the largest partial sum smaller
than sk + m. This means sb+1 is an element of U . Since

sb+8 − sb = ab+1 + ab+2 + · · ·+ ab+8 ≤ 16

we know
sb+8 ≤ 16 + sb < m + 16 + sk

so sb+1 through sb+8 are all elements of U .

Now we know that T contains at least 9 partial sums from our sequence and U contains at
least 8 partial sums. By the Pigeonhole Principle, one of the sixteen sets

{sk,m + sk}, {1 + sk,m + 1 + sk}, . . . {15 + sk,m + 15 + sk}

contains two partial sums. These two give us the desired si, sj with difference m, so the
proof is complete.
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5/3/25. For any positive integer b ≥ 2, we write the base-b numbers as follows:

(dkdk−1 . . . d0)b = dkb
k + dk−1b

k−1 + · · ·+ d1b
1 + d0b

0,

where each digit di is a member of the set S = {0, 1, 2, . . . , b−1} and either dk 6= 0 or k = 0.
There is a unique way to write any nonnegative integer in the above form.

If we select the digits from a different set S instead, we may obtain new representations of
all positive integers or, in some cases, all integers. For example, if b = 3 and the digits are
selected from S = {−1, 0, 1}, we obtain a way to uniquely represent all integers, known as the
balanced ternary representation. As further examples, the balanced ternary representation
of the numbers 5, −3, and 25 are:

5 = (1 −1 −1)3, −3 = (−1 0)3, 25 = (1 0 −1 1)3.

However, not all digit sets can represent all integers. If b = 3 and S = {−2, 0, 2}, then no
odd number can be represented. Also, if b = 3 and S = {0, 1, 2} as in the usual base-3
representation, then no negative number can be represented.

Given a set S of four integers, one of which is 0, call S a 4-basis if every integer n has at
least one representation in the form

n = (dkdk−1 . . . d0)4 = dk4k + dk−14
k−1 + · · ·+ d14

1 + d04
0,

where dk, dk−1, . . . , d0 are all elements of S and either dk 6= 0 or k = 0.

(a) Show that there are infinitely many integers a such that {−1, 0, 1, 4a + 2} is not a
4-basis.

(b) Show that there are infinitely many integers a such that {−1, 0, 1, 4a+ 2} is a 4-basis.

Solution

Given a set S of 4 integers with one of them 0, we will say a nonzero integer n is repre-
sentable using S if we can write n in the form

(dkdk−1 . . . d0)4 = dk4k + dk−14
k−1 + · · ·+ d14

1 + d04
0,

where dk, dk−1, . . . , d0 are all elements of S and dk 6= 0.

Part a:

We will show that if 4a + 2 is a multiple of 3, we do not get a 4-basis. Any value of a ≡ 1

(mod 3) will force 3 | 4a+2 so there are infinitely many such S. Let b =
4a + 2

3
and suppose

that S = {−1, 0, 1, 3b} is a 4-basis. Since −b is representable using X,

−b = (dkdk−1 . . . d0)4 = dk4k + dk−14
k−1 + · · ·+ d14

1 + d04
0,
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where dk, dk−1, . . . , d0 are all elements of X and dk 6= 0. Choose some representation with k
minimal. Notice that

−b ≡ 3b ≡ 4a + 2 ≡ 2 (mod 4)

but our expression for b also gives

−b ≡ (dkdk−1 . . . d0)4 ≡ d0 (mod 4).

The only choice for d0 in S that is congruent to 2 modulo 4 is d0 = 3b. Then removing the
final digit we get

−b = (dkdk−1 . . . d0)4 = 4 · (dkdk−1 . . . d1)4 + 3b.

Isolating −b gives −b = (dkdk−1 . . . d1)4. However, this gives us a representation for −b with
fewer digits, contradicting the minimality of k. So there could not have been a representation
of −b, and {−1, 0, 1, 4a + 2} is not a 4-basis.

Part b:

We claim that Sb = {−1, 0, 1, 4b − 2} is a 4-basis for every positive integer b. Since 4b − 2 is
of the form 4a + 2, this will suffice.

For a given n, let d′ be the element of Sb such that n ≡ d′ (mod 4). Note that if

n− d′

4
= dk4k + dk−14

k−1 + · · ·+ d14
1 + d0

then
n = dk4k+1 + dk−14

k + · · ·+ d14
2 + d04

1 + d′.

Therefore,

Lemma 1: If n−d′
4

is representable by Sb, then n is representable by Sb.

The number |n−d′
4
| will often be smaller than |n|, suggesting that we may be able to use the

fact that n is representable when |n| is small to prove that every n is representable. We first
explore when |n−d′

4
| < |n|.

Assume that n 6= 0. If d′ = −1, 0, or 1, then∣∣∣∣n− d′

4

∣∣∣∣ ≤ |n|+ 1

4
≤ |n|.

However, if d′ = 4c − 2 then ∣∣∣∣n− d′

4

∣∣∣∣ ≤ |n|+ (4c − 2)

4

which could be larger than n. In the case that |n| ≥ 4c

3
, we have 4c ≤ 3|n| so∣∣∣∣n− d′

4

∣∣∣∣ ≤ |n|+ (4c − 2)

4
<
|n|+ 4c

4
≤ |n|+ 3|n|

4
≤ |n|.

In summary, we see that:
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Lemma 2: If |n| ≥ 4b

3
then |n−d′

4
| < |n|.

Suppose that we know that every n with 0 < |n| < 4b

3
is representable by Sb. Then we can

prove that every n is representable by strong induction on |n| as follows. Suppose that n is
representable when |n| ≤ N , and suppose that |n| = N + 1. If n−d′

4
= 0 then n is in Sb so is

representable. Assume not. By the first lemma, n is representable if n−d′
4

is representable.

Either 0 < |n−d′
4
| < 4b

3
, in which case n−d′

4
is representable by assumption, or |n−d′

4
| ≥ 4b

3
, in

which case |n−d′
4
| < |n|, by our second lemma, so that n−d′

4
is representable by our inductive

hypothesis. So to prove that every n is representable, it suffices to prove that every n with
0 < |n| < 4b

3
is representable.

As an example, the b = 1 case is follows since values of n for which 0 < |n| < 4
3

are −1 and
1, and these values are in S1.

For values of n such that −n is representable by S1 with k ≤ b digits, we can use such a
representation to construct a representation of n by Sb as follows. Suppose that

−n = dk−14
k−1 + dk−24

k−2 + · · ·+ d14
1 + d04

0

where d0, d1, . . . , dk−1 ∈ S1 and k ≤ b. Then

n = (−dk−1)4k−1 + (−dk−2)4k−2 + · · ·+ (−d1)41 + (−d0)40

We want to use this to represent n by Sb. Consider a new sum,

ek+b−14
k+b−1 + ek+b−24

k+b−2 + · · ·+ e04
0

where ei is defined as follows. If i < k then

ei =

{
−di if di ∈ {−1, 0, 1}

4b − 2 if di = 2

If k ≤ i < b then we set ei = 0. When i ≥ b, let

ei =

{
0 if di−b ∈ {−1, 0, 1}
−1 if di−b = 2

Then if di 6= 2,
ei+b4

i+b + ei4
i = 0 + (−di)4i = (−di)4i.

Furthermore, if di = 2, we get

ei+b4
i+b + ei4

i = (−1)4i+b + (4b − 2)4i = −2 · 4i = (−di)4i

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 3 Solutions

Year 25 — Academic Year 2013–2014
www.usamts.org

as well. Therefore

n =
k−1∑
i=0

(−di)4i

=
k−1∑
i=0

ei+b4
i+b + ei4

i

=
k+b−1∑
i=0

ei4
i.

Each ei is in Sb so we are done.

We now use mathematical induction to prove that every n with |n| < 4b

3
can be represented

by S1 using b or fewer digits.

The b = 1 case is that ±1 may be represented with a single digit. This is true since these
are indeed in S1. Now we suppose that the claim is true for b and prove it is true for b + 1.
That is, if n−d′

4
is representable using b digits, then n is representable using b + 1 digits. So

to prove the claim, it suffices to show that if |n| < 4b+1

3
then |n−d′

4
| < 4b

3
.

If d′ ∈ {−1, 0, 1} then n−d′ is the nearest multiple of 4 to n. If d′ = 2 then n−d′ is the next
lower multiple of 4. So replacing n by n− d′ rounds n to the nearest multiple of 4, rounding
down to break ties.

Suppose that |n| < 4b+1

3
. Since n is an integer and 4b+1 is one more than a multiple of 3,

1− 4b+1

3
≤ n ≤ 4b+1 − 1

3
.

When we round all elements in this interval to the nearest multiple of 4 we find

4− 4b+1

3
≤ n− d′ ≤ 4b+1 − 4

3
.

This means
1− 4b

3
≤ n− d′

4
≤ 4b − 1

3
.

making

∣∣∣∣n− d′

4

∣∣∣∣ < 4b

3
. So if |n| < 4b+1

3
, then |n−d′

4
| < 4b

3
. This proves that every n with

|n| < 4b

3
is representable by S1 using no more than b digits.

Since every n with |n| < 4b

3
is representable by S1 using at most b digits, every such n is

representable in Sb and this gives us the base cases for our induction.
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