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1/2/25. In the 3 × 5 grid shown, fill in each empty
box with a two-digit positive integer so that:

(a) no number appears in more than one box, and

(b) for each of the 9 lines in the grid consisting of
three boxes connected by line segments, the box in
the middle of the line contains the least common
multiple of the numbers in the other two boxes on
the line.

You do not need to prove that your answer is the only one possible; you merely need to
find an answer that satisfies the constraints above. (Note: In any other USAMTS problem,
you need to provide a full proof. Only in this problem is an answer without justification
acceptable.)

Solution

Let x, y, z be three numbers on a line in that order, so that y = lcm(x, z). Notice that if
x is a divisor of z, then y = lcm(x, z) = z. But we must have y 6= z since all the numbers
must be distinct, so we conclude that x cannot be a divisor of z. By the same reasoning, z
cannot be a divisor of x. That is, neither number at the end of a line can be a divisor of the
number at the other end. Call this the anti-divisor property.
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Label the unknown numbers in the grid with the
variables a through m as shown at right. By the
anti-divisor property, m is not a multiple of 4 or 9.
But if m’s only prime divisors are 2 and/or 3, then
m ≤ 6, which contradicts the requirement that m
is a 2-digit number. Therefore, m must have a
prime divisor p with p ≥ 5. Then, h, i, and l are
all multiples of m, so they each are multiples of p.
g is also a multiple of h, so it is a multiple of p. Since lcm(4, c) = g and p divides 4 but not
g, p must also divide c. Then, d is a multiple of c, so d is a multiple of p. In summary, all
of c, d, g, h, i, l,m are multiples of p.

In particular, d and i are each multiples of 9p, so we must have p = 5, because if p ≥ 7 then
there is at most 1 two-digit multiple of 9p. Hence d and i are 45 or 90 in either order. This
means that c and m are each multiples of 5 but divisors of 90, so they must be 10, 15, or
30. However, if one of them were 30, then the line c—h—m would violate the anti-divisor
property, so c and m must be 10 and 15 in either order. But if c = 10 and m = 15, this
makes l = 60 and g = 20, a contradiction since g ≥ l. Thus, c = 15 and m = 10.
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We can now fill in all of the rightmost three columns
of the grid, as shown to the right.

Next, we see that b must be a two-digit multiple of
3 but a divisor of 60. The only possibility not yet
used in the grid is b = 12. Thus f is a multiple of
12, but it cannot be a multiple of 8 because then
a would be a multiple of 8, contradicting the anti-
divisor property on the line a—f—4. This leaves
the only possibilities for f , after also excluding the multiples of 12 already in the grid, as
36 or 84. But a and k must both be two-digit divisors of f , and the only two-digit proper
divisors of 36 are 12 and 18, and 12 is already in the grid (at b). Thus we must have f = 84.
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The grid is now as shown at right. Next, we see
that a must be a multiple of 21 and a proper divisor
of 84, so it must be 21 or 42. But a = 42 leaves no
value for e, so we must have a = 21. Then e must
be 42 or 63, but e = 63 leaves no two-digit value
for j, so we must have e = 42, which forces j = 14.
Finally, k is a two-digit proper divisor of 84 not yet
used in the grid, and the only value remaining is
k = 28.

The completed grid is shown below, and our argument above proves that this solution is
unique.
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2/2/25. Let ABCD be a quadrilateral with AB ‖ CD, AB = 16, CD = 12, and BC < AD.
A circle with diameter 12 is inside of ABCD and tangent to all four sides. Find BC.

Solution
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Let O be the center of the circle, let E and F be the points of tangency to AB and CD,
respectively, and let G be the point of tangency to BC, as in the picture above.

Let x = EB, and note that since 4OEB ∼= 4OGB, we also have BG = x. Let y = FC,
and note that since 4OFC ∼= 4OGC, we also have CG = y. Further, notice that

∠EOB =
1

2
∠EOG =

1

2
(180◦ − ∠FOG) = 90◦ − 1

2
∠FOG = 90◦ − ∠FOC.

Thus, ∠EOB and ∠FOC are complementary angles, and hence 4EOB and 4FCO are
similar right triangles. Therefore, EB

EO
= FO

FC
, giving x

6
= 6

y
, or xy = 36.

Let x′ = EA and y′ = FD. Using the same reasoning as above in trapezoid AEFD, we have
x′y′ = 36.

We also have the equations

x + x′ = 16, (1)

y + y′ = 12. (2)

Using y = 36
x

and y′ = 36
x′ , (2) becomes

1

x
+

1

x′
=

1

3
. (3)

But (3) is equivalent
x + x′

xx′
=

1

3
, which simplifies to 3(x + x′) = xx′, so using (1) we have

xx′ = 48. (4)

Now, equations (1) and (4) together tell us that x and x′ are the roots of the quadratic
equation t2 − 16t+ 48 = 0, which factors as (t− 12)(t− 4) = 0, so x and x′ are 4 and 12 (in
some order). Using xy = x′y′ = 36, we find that the two possible solutions are

(x, y, x′, y′) = (4, 9, 12, 3) or (x, y, x′, y′) = (12, 3, 4, 9).

However, recall that BC = x + y and AD = x′ + y′, and we must have BC < AD. This
forces the first solution for (x, y, x′, y′), giving a final answer of BC = 13.
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3/2/25. For each positive integer n ≥ 2, find a polynomial Pn(x) with rational coefficients

such that Pn

(
n
√

2
)

=
1

1 + n
√

2
. (Note that n

√
2 denotes the positive nth root of 2.)

Solution

We use the factorization
1− rk

1− r
= 1 + r + r2 + · · ·+ rk−1.

Let k = 2n and r = − n
√

2. Then the above equation becomes

1− 4

1 + n
√

2
= (− n

√
2)2n−1 + (− n

√
2)2n−2 + (− n

√
2)2n−3 + (− n

√
2)2n−4 + · · ·+ (− n

√
2) + 1.

Therefore,

1

1 + n
√

2
=

( n
√

2)2n−1 − ( n
√

2)2n−2 + ( n
√

2)2n−3 − ( n
√

2)2n−4 + · · ·+ n
√

2− 1

3
.

Hence, we may choose

Pn(x) =
x2n−1 − x2n−2 + x2n−3 − x2n−4 + · · ·+ x− 1

3
=

2n−1∑
i=0

(−1)i+1

3
xi.
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4/2/25. An infinite sequence of real numbers a1, a2, a3, . . . is called spooky if a1 = 1 and for
all integers n > 1,

na1 + (n− 1)a2 + (n− 2)a3 + · · · + 2an−1 + an < 0,

n2a1 + (n− 1)2a2 + (n− 2)2a3 + · · · + 22an−1 + an > 0.

Given any spooky sequence a1, a2, a3, . . ., prove that

20133a1 + 20123a2 + 20113a3 + · · ·+ 23a2012 + a2013 < 12345.

Solution

Define the following quantities for each positive integer k:

tk = ka1 + (k − 1)a2 + · · ·+ 2ak−1 + ak,

uk = k2a1 + (k − 1)2a2 + · · ·+ 22ak−1 + ak,

vk = k3a1 + (k − 1)3a2 + · · ·+ 23ak−1 + ak.

Note that from the given conditions, t1 = u1 = 1, and tk < 0 < uk for all k > 1.

We compute:

tk + tk+1 + · · ·+ t1 = (k + (k − 1) + · · ·+ 1)a1

+ ((k − 1) + (k − 2) + · · ·+ 1)a2

+ ((k − 2) + (k − 3) + · · ·+ 1)a3

+
...

+ ak.

By using the fact that 1 + 2 + · · ·+ n = n2+n
2

, we have:

tk + tk−1 + · · ·+ t1 =
k2 + k

2
a1 +

(k − 1)2 + (k − 1)

2
a2 +

(k − 2)2 + (k − 2)

2
a3 + · · ·+ ak

=
1

2
(uk + tk).

Thus,
uk = 2(t1 + t2 + t3 + · · ·+ tk−1) + tk.

In particular, note that uk < 2t1 = 2 for all k > 1.

Similarly, we compute:

uk + uk+1 + · · ·+ u1 = (k2 + (k − 1)2 + · · ·+ 12)a1

+ ((k − 1)2 + (k − 2)2 + · · ·+ 12)a2

+ ((k − 2)2 + (k − 3)2 + · · ·+ 12)a3

+
...

+ ak.
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By using the fact that 12 + 22 + · · ·+ n2 = 2n3+3n2+n
6

, we have:

uk + uk−1 + · · ·+ u1 =
2k3 + 3k2 + k

6
a1 +

2(k − 1)3 + 3(k − 1)2 + (k − 1)

6
a2 + · · ·+ ak

=
1

6
(2vk + 3uk + tk).

Thus,

vk = 3(uk + uk−1 + · · ·+ u1)−
3uk + tk

2
= 3(uk−1 + · · ·+ u1) +

3uk − tk
2

.

Since uk < 2 and tk < 0 for all k > 1, we have

vk < 3(2(k − 2) + 1) +
3(2)

2
= 6k − 6.

In particular, v2013 < 6(2013)− 6 = 12072 < 12345, as desired.
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5/2/25. Let S be a planar region. A domino-tiling of S is a partition of S into
1× 2 rectangles. (For example, a 2× 3 rectangle has exactly 3 domino-tilings,
as shown to the right.) The rectangles in the partition of S are called dominoes.

(a) For any given positive integer n, find a region Sn with area at most 2n
that has exactly n domino-tilings.

(b) Find a region T with area less than 50000 that has exactly 100002013
domino-tilings.

Solution

11
22

3
3

44
5
5

66
7
7

88
9
9
1010

11
11

(a) Consider the infinitely repeating pattern of squares
shown in the diagram to the right, where we have col-
ored some squares gray and the rest white. For each
positive integer n, define Sn to be the region contain-
ing the squares in this figure numbered 1 to n inclusive.
We claim that Sn has exactly n domino-tilings, which
we will prove below. Since Sn has area 2n, these are
our desired regions.

First, for n ≥ 2, define Bn to be the same region as Sn

except omitting the two white squares labeled n and
n − 1. We prove that Bn has a unique domino-tiling,
by induction on n. The base case n = 2 is clear: B2 consists only of the gray squares
labeled 1 and 2. For the inductive step, let k ≥ 2 be given and assume that Bk has a unique
domino-tiling, and consider Bk+1. The gray square labeled k + 1 touches only the white
square labeled k − 1, so in any domino-tiling of Bk+1 those two squares must be part of the
same piece of the partition (i.e. must be covered by the same domino). But what remains
is Bk, which by inductive hypothesis has a unique domino-tiling. Thus, Bk+1 has a unique
domino-tiling.

Now we prove our claim that Sn has exactly n domino-tilings, by induction on n. The base
cases of n = 1 and n = 2 are easily checked: S1 has a unique domino-tiling since it has
only two squares, and S2 is a 2 × 2 square, so the only possible domino-tilings are either
two horizontal or two vertical dominos, yielding exactly 2 domino-tilings. Now let k ≥ 2 be
a given positive integer, and assume that Sk has exactly k domino-tilings. Consider Sk+1,
and in particular the domino including the white square labeled k + 1. If this domino also
includes the white square labeled k, then what remains is Bk+1, and thus there is only one
way to complete the domino-tiling of Sk+1. Otherwise, our initial domino covers both squares
labeled k + 1. Then, the region that remains is Sk, so by the inductive hypothesis, there are
k ways to complete the domino-tiling of Sk+1. Combining the two cases, we have k + 1 total
ways of tiling Sk+1, completing the inductive step.
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Z3

Z4(b) Take two copies of S10000 and one copy of S2013.
Use them to construct the shape T shown in the di-
agram at right. (Some squares have been labeled
Xi, Yi, or Zi, for use in our proof below.)

The area of T is

30 + 2(2 · 10000) + 2 · 2013 = 44056,

which is less than 50000. We now show that T has
exactly 100002013 domino-tilings, by showing that all
domino-tilings fall into one of the following two cases.

S10000

S2013

S10000

X1X2

X3

X4

Y1 Y2 Y3

Y4

Z1 Z2

Z3

Z4Case 1: The same domino covers X1 and X2.
There are now an odd number of remaining squares in
the bottom left copy of S10000, so X3 and X4 are also
covered by the same domino. This forces the dominos
as shown to the right. Both copies of S10000 have
had their two top left squares (X2, X3 and Z2, Z3)
already used, meaning that what remains (for each)
is B10000 and each has only one way to be domino-
tiled. In contrast, the copy of S2013 is intact, so it has
2013 ways to be domino-tiled. Thus there are 2013
domino-tilings in this case.

S10000

S2013

S10000

X1X2

X3

X4

Y1 Y2 Y3

Y4

Z1 Z2

Z3

Z4Case 2: Different dominoes cover X1 and X2.
Then X3 and X4 cannot be covered by the same
domino, since this would leave an odd number of
squares in S10000. This forces the dominos as shown
to the right. Both copies of S10000 are intact, meaning
they each have 10000 ways of being domino-tiled, and
the tilings of each copy of S10000 are independent of
each other. On the other hand, the copy of S2013 has
both squares Y2, Y3 already used, so what remains is
B2013, and this has only one domino-tiling. So there
are 10000 · 1 · 10000 = 100002 domino-tilings in this
case.

Adding up the two cases, we get 2013 + 100002 = 100002013 total domino-tilings of T , as
required.
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