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1/1/25. Alex is trying to open a lock whose code is a sequence that is three letters long, with
each of the letters being one of A, B or C, possibly repeated. The lock has three buttons,
labeled A, B and C. When the most recent 3 button-presses form the string, the lock opens.
What is the minimum number of total button presses Alex needs to be sure to open the
lock?

Solution

The answer is 29. This can be achieved with the following sequence of presses:

AAACCCBCCACBBCBACABCAABBBABAA

There are 3 · 3 · 3 = 27 different strings of three letters with each letter being one of A, B,
or C. All 27 of these strings appear consecutively in the above sequences of presses.

Each press of the button corresponds to attempting at most one more string, namely the one
formed by the previous three presses. No string can be attempted after the first two presses.
Therefore, the first time that all 27 strings can be tried on the lock is after 27 + 2 = 29
presses of the button, so 29 is indeed the minimum.
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2/1/25. In the 5 × 6 grid shown, fill in all of the grid cells with
the digits 0–9 so that the following conditions are satisfied:

1. Each digit gets used exactly 3 times.

2. No digit is greater than the digit directly above it.

3. In any four cells that form a 2× 2 subgrid,
the sum of the four digits must be a multiple of 3.

You do not need to prove that your configuration is the only
one possible; you merely need to find a configuration that satisfies the constraints above.
(Note: In any other USAMTS problem, you need to provide a full proof. Only in this
problem is an answer without justification acceptable.)

Solution
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Label the unknown cells with the variables a through v as shown to the
right. Using rule 3 repeatedly in the top two rows, we have

b+ 8 + c+ g ≡ c+ g+d+h ≡ d+h+ 7 + i ≡ 7 + i+ e+ 6 ≡ 0 (mod 3).

The first equivalence above gives us b+8 ≡ d+h (mod 3), and the third
equivalence gives us d + h ≡ e + 6 (mod 3). Thus b + 8 ≡ e + 6 (mod 3). Since 8 ≤ b ≤ 9
and 6 ≤ e ≤ 9, we must have that (b, e) is either (8, 7) or (9, 8).

Applying the technique above repeatedly gives us the following fourth rule:

4. If two columns are an even distance apart, then any adjacent pair of cells in the first
column has the same sum modulo 3 as the corresponding adjacent pair in the second
column. Similarly, if two rows are an even distance apart, then any adjacent pair of
cells in the first row has the same sum modulo 3 as the corresponding adjacent pair in
the second row.

Using rule 4, we have 5 + r ≡ 1 + u (mod 3). In particular, since u must be 0 or 1, we must
have r be either 0 or 2 modulo 3.
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Now consider the sum of all numbers of the board. We have three copies
of every digit, so this sum is a multiple of 3. We also know that the six
2× 2 squares shown in the diagram to the right all sum to a multiple of
3. Subtracting these six squares out from the sum of the whole board,
we get that

7 + e + 2 + 4 + r + 3 = 16 + e + r ≡ 1 + e + r ≡ 0 (mod 3).

But e must be 7 or 8 from above, and r must be 0 or 2 modulo 3, so the only possibility is
that e = 8 and r ≡ 0 (mod 3). Hence (b, e) = (9, 8) and also u = 1.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 1 Solutions

Year 25 — Academic Year 2013–2014
www.usamts.org

7
8 6

2 4
5 1

3

a 9 c d 8
f g h i
j k l m

n o p q
r

0 or 3 s t 1 v

Now the grid looks as shown. Next, note that i ≡ 0 (mod 3) using the
upper-right 2× 2 corner of the grid. So by rule 4 applied to the top two
rows, we have

a + f ≡ c + g ≡ 7 + i ≡ 1 (mod 3),

9 + 8 ≡ d + h ≡ 8 + 6 ≡ 2 (mod 3).

In particular, no column can contain two 9’s, so all three 9’s must be in the top row.
Additionally, by rule 4, c+ d ≡ 2 + 4 ≡ 0 (mod 0), so since one of c and d must be a 9, they
both must be multiples of 3. Also a is a multiple of 3 since by rule 4, a + 9 ≡ r + 3 ≡ 0
(mod 3). So a, c, d, i, and r are all multiples of 3.
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At this point, we have shaded the boxes that we know must be mul-
tiples of 3. We know enough of the cells modulo 3 for simple appli-
cations of rules 3 and 4 to give us the value of all of the cells mod-
ulo 3. For example, d + 7 + h + i ≡ 0 + 1 + h + 0 ≡ 0 (mod 3), so
h ≡ 2 (mod 3). Repeating this around the grid gives us the following
chart:

7
8 6

2 4
5 1

3

9

1

8

0
mod 3

0
mod 3

1
mod 3

2
mod 3

2
mod 3

0
mod 3

0
mod 3

1
mod 3

2
mod 3

0
mod 3

2
mod 3

1
mod 3

0
mod 3

0
mod 3

1
mod 3

2
mod 3

1
mod 3

0
mod 3

0
mod 3

We now just need to apply rules 1 and 2 repeatedly to determine the exact values of each
cell. This is mostly a case of filling in from the top and/or the bottom using rule 2, and
keeping track of how many times each digit is used to apply rule 1. To start, the only place
for the three 0’s is the bottom row, and the only place for the remaining 1 is the 4th column.
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The grid now looks as at right. The only numbers that fit in the left
column with the correct residues modulo 3 are (a, f, j) = (9, 7, 5), and
the only remaining place for the last 8 is h. This makes d = 9 and c = 6.
Then o = 2 and (q, v) = (5, 2) are the only ways to place the remaining
numbers that are 2 modulo 3, and the rest of the grid easily fills to give
us the final answer below.
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3/1/25. An infinite sequence of positive real numbers a1, a2, a3, . . . is called territorial if for
all distinct positive integers i, j with i < j, we have |ai − aj| ≥ 1

j
. Can we find a territorial

sequence a1, a2, a3, . . . for which there exists a real number c with ai < c for all i?

Solution

We will construct a territorial sequence exists whose maximum value is 2. This allows us to
choose c to be any number greater than 2.

Consider the sequence

(ai) = 2, 1,
1

2
,
3

2
,
1

4
,
3

4
,
5

4
,
7

4
,
1

8
,
3

8
,
5

8
,
7

8
,
9

8
,
11

8
,
13

8
,
15

8
,

1

16
,

3

16
, . . . .

Specifically, a1 = 2, and for any positive integer n ≥ 2, let k be the unique nonnegative

integer such that 2k < n ≤ 2k+1, and then an = 2(n−2k)−1
2k

. Note that all the numbers in
the sequence are distinct.

Suppose we are given two positive integers i, j with i < j. Let k be the unique nonnegative
integer such that 2k < j ≤ 2k+1. Then aj = t

2k
for some odd integer t. Since i ≤ 2k+1, we also

have ai = u
2k

for some integer u with t 6= u and u not necessarily odd. Then |ai−aj| ≥ 1
2k

> 1
j
,

as desired.
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4/1/25. Bunbury the bunny is hopping on the positive integers. First, he is told
a positive integer n. Then Bunbury chooses positive integers a, d and hops on
all of the spaces a, a + d, a + 2d, . . . , a + 2013d. However, Bunbury must make
these choices so that the number of every space that he lands on is less than n and relatively
prime to n.

A positive integer n is called bunny-unfriendly if, when given that n, Bunbury is unable to
find positive integers a, d that allow him to perform the hops he wants. Find the maximum
bunny-unfriendly integer, or prove that no such maximum exists.

Solution

Let M be the product of all prime numbers less than 2014. We claim that the maximum
bunny-unfriendly integer is 2013M . Note that 2013 = 3 · 11 · 63 is not prime, so all of the
prime divisors of 2013M are less than 2013.

First, we verify that 2013M is bunny-unfriendly. Suppose, for sake of contradiction, that pos-
itive integers a and d could be chosen so that a+2013d < 2013M and gcd(a+kd, 2013M) = 1
for all 0 ≤ k ≤ 2013. If there is a prime p less than 2014 that does not divide d, then d−1

exists modulo p. Choose 0 ≤ k < p such that k ≡ −ad−1 (mod p). Then a+kd is a multiple
of p, and gcd(a + kd, 2013M) ≥ p, a contradiction. Therefore no such p exists, and thus
d must be a multiple of M . But then a + 2013d > 2013d > 2013M , also a contradiction.
Thus, Bunbury will not be able to find an a and d to use for his hopping, and hence 2013M
is bunny-unfriendly.

Next, we verify that all numbers greater than 2013M are bunny-friendly. Let n be an integer
greater than 2013M , and let p be the largest prime divisor of n. We break into cases based
on the properties of p.

Case 1: p < 2014, so that all the prime divisors of n are less than 2014.
Let x be the product of n’s distinct prime divisors. Let a = 1 and d = x, and note that we
have that gcd(n, 1 + kx) = 1 for all integers k. Furthermore, 1 + 2013x < 2014x, which is at
most n because n

x
> n

M
> 2013. Thus, this choice of a and d proves that n is bunny-friendly.

Case 2: p > 2014.
We first consider a = 1 and d = n

p
. If d is still a multiple of p, then gcd(n, 1 + kd) = 1 for all

integers k. Furthermore, 1 + 2013d = 1 + 2013n
p

< n. So this choice of a and d proves that n
is bunny-friendly.

But if d is not a multiple of p, then there is a unique b with 0 ≤ b < p such that 1 + bd
is a multiple of p, and hence gcd(n, 1 + bd) = p. For all other 0 ≤ k < p with k 6= b, we
have gcd(n, 1 + kd) = 1. Thus, if b > 2013, choosing a = 1 and d = n

p
still proves that n is

bunny-friendly, by the argument above.

If b < 2014, then we can try to start our hopping after the “bad” multiple of d. That is, we
let a = 1 + (b + 1)d. This works provided that

a + 2013d = 1 + (b + 2014)d < n.
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So it is sufficient to have 1 + 4027d < n. If p > 4028, then this will always be the case,
because then 1 + 4027d < 1 + 4027

4028
n < n.

So our remaining case is when d is not a multiple of p and p ≤ 4027. In this case we have to
try something different. Let a = p+d. Note that gcd(n, p+(k+1)d) = 1 for all 0 ≤ k ≤ 2013.
Furthermore,

p + 2014d = p +
2014n

p
=

(
p

n
+

2014

p

)
n,

but p
n

is very small (recall that n > 2013M is very large relative to p < 4028); in particular
n > p2, so p

n
< 1

p
, and hence

p + 2014d <

(
1

p
+

2014

p

)
n =

2015

p
n < n.

Thus this choice of a and d proves that n is bunny-friendly.

In all cases, any n > 2013M is bunny-friendly. Thus, 2013M is the largest bunny-unfriendly
integer.
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5/1/25. Niki and Kyle play a triangle game. Niki first draws 4ABC with area 1, and Kyle
picks a point X inside 4ABC. Niki then draws segments DG, EH, and FI, all through
X, such that D and E are on BC, F and G are on AC, and H and I are on AB. The ten
points must all be distinct. Finally, let S be the sum of the areas of triangles DEX, FGX,
and HIX. Kyle earns S points, and Niki earns 1− S points. If both players play optimally
to maximize the amount of points they get, who will win and by how much?

Solution

(We use the common notation that [PQR] denotes the area of triangle PQR.)

We claim that the game will end with S = 1
3
. In particular, for any X that Kyle chooses, we

will show that Niki can choose her points so that S ≤ 1
3
, and if X is the centroid of ABC,

then the best that Niki can do is S = 1
3
.

Note that none of the argument below depends on how triangle ABC is drawn, so how Niki
draws ABC is irrelevant.

A

BC DE

F

G

H

I
X

In the diagram at right, S is the sum of the shaded
areas. Consider the sum of the areas [AFI]+[BEH]+
[CDG]. Notice that this sum counts each white region
once but each shaded region twice: for example, [HIX]
is counted in both [AFI] and [BEH]. Therefore,

[AFI] + [BEH] + [CDG] = 1 + S,

and hence
S = [AFI] + [BEH] + [CDG]− 1.

We will show that for any X Kyle chooses, Niki can choose her points such that

[AFI] + [BEH] + [CDG] ≤ 4

3
,

which implies that S ≤ 1
3
.

Let X be Kyle’s chosen point. Let a, b, and c be the lengths of BC, AC, and AB, respectively,
and let hA, hB, and hC be the distances from X to BC, AC, and AB, respectively.

A

BC

F

IX

hb

hc

r
s

We will focus on Niki’s choices of F and I to minimize
[AFI]. Let r = AI and s = AF . On the one hand,

[AFI] = [AFX] + [AIX] =
1

2
(rhB + shC).

On the other hand, since [ACB] = 1, we have

[AFI] =
[AFI]

[ACB]
=

rs sin∠FAI

bc sin∠CAB
=

rs

bc
.
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Combining the above two equations, we have

[AFI] =
1

2
(rhB + shC) =

rs

bc
. (∗)

Set x = [AFI]. By the AM-GM inequality,

x =
1

2
(rhB + shC) ≥

√
rhbshC .

But rs = 1
2
bc(rhB + shC) = bcx by (∗), therefore

x ≥
√

bchBhCx.

Squaring and solving for x gives
x ≥ bchBhC ,

with equality if and only if rhB = shC . In the equality case, (∗) gives rhB = rs
bc

, so s = bchB,
and similarly r = bchC . Thus, Niki minimizes [AFI] by choosing F and I so that r = bchC

and s = bchB. She will able to make these choices provided that bhB ≤ 1 and chC ≤ 1.

So, if Kyle picks X such that ahA, bhB, and chC are all less than 1, then Niki can choose
her points so that

[AFI] + [BEH] + [CDG] = bchBhC + cahChA + abhAhB.

A

BC DE

F

G H

I
X

Let’s dispose of the contrary case first: suppose Kyle
picks X such that (without loss of generality) ahA ≥ 1,
or equivalently ha ≥ 1

a
. Niki can choose F and I so

that FI ‖ CB. Then by similarity, and using the fact
that the height from A to BC is 2

a
, we have

[AFI] =

( 2
a
− ha

2
a

)2

≤
( 1

a
2
a

)2

=
1

4
.

Furthermore, Niki can pick G and H very close to A so that [BEH] + [CDG] is as close to
1 as she wishes (in the extreme case, G = H = A and [BEH] + [CDG] = 1), in particular,
Niki can get [BEH] + [CDG] < 13

12
. Thus, Niki can achieve

[AFI] + [BEH] + [CDG] <
1

4
+

13

12
=

4

3
.

Now for the remaining cases: let p = ahA, q = bhB, and r = chC , and assume that Kyle
picks X such that p, q, r are all less than 1. Then we have

[AFI] + [BEH] + [CDG] = qr + rp + pq.
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But we also have the general inequality

(qr + rp + pq) ≤ 1

3
(p + q + r)2,

with equality if and only if p = q = r. (This is a corollary of the rearrangement inequality
pq+qr+rp ≤ p2+q2+r2, which itself follows from the inequality (p−q)2+(q−r)2+(r−p)2 ≥
0.) On the other hand,

p + q + r = 2[BCX] + 2[CAX] + 2[ABX] = 2[ABC] = 2,

so Niki’s choices result in

[AFI] + [BEH] + [CDG] = qr + rp + pq ≤ 1

3
(p + q + r)2 =

4

3
,

and this inequality is strict unless p = q = r. Since Kyle wants to choose X to maximize the
amount of area that Niki must choose, he wants to force the inequality to be an inequality
by choosing X such that p = q = r. This means that ahA = bhB = chC , which means that
X is the centroid of ABC.

In all cases, Niki can pick points such that

S = [AFI] + [BEH] + [CDG]− 1 ≤ 1

3
,

and Kyle can force her into S = 1
3

by picking X to be the centroid of ABC. Thus, with
optimal play, Niki will score 2

3
and Kyle will score 1

3
.
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