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1/3/24. In the 8× 8 grid shown, fill in 12 of the grid cells with the
numbers 1–12 so that the following conditions are satisfied:

1. Each cell contains at most one number, and each
number from 1–12 is used exactly once.

2. Two cells that both contain numbers may not touch,
even at a point.

3. A clue outside the grid pointing at a row or column gives
the sum of all of the numbers in that row or column.
Rows and columns without clues have an unknown sum.

You do not need to prove that your configuration is the only one possible; you merely need
to find a configuration that satisfies the constraints above. (Note: In any other USAMTS
problem, you need to provide a full proof. Only in this problem is an answer without
justification acceptable.)

Solution

Number the rows and columns 1–8 starting from the top and left, and denote the space
in row m and column n by RmCn. For example, the top left square is R1C1. This solution
will solve the problem without using the 18 clue in row 2, which is actually unnecessary to
have a unique solution.

The only ways to have a row or column with numbers summing to 3 is for it to have only
3 or only 1 and 2. The only way to have a row or column with numbers summing to 1 is to
have just 1. From this, we conclude that column 2 has just 1, and that column 3 has just 3,
since it cannot have 1.
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Now consider the first and last row. One of them has only
3, and the other one has only 1 or 2. The one with 3 must have
it in column 3. The one with 1 and 2 has the 1 in column 2.
As a result, the 1 in column 2 and the 3 in column 3 must be in
the first and last rows. The other spaces of these two columns
cannot have numbers. To the right is an image summarizing
the progress so far.

Notice that by the second rule, a 2 × 2 subblock of the
grid can contain at most one number. Consider rows 6 and 7,
which have 20 and 13 as clues. Since we are not allowed to
have numbers 13 or greater, each row must have at least two numbers. But since the two
rows can be partitioned into four 2 × 2 subblocks each with at most number, we can have
at most four numbers in the two rows, so each row has exactly two numbers. The same
logic can be applied to columns 5 and 6 with 20 and 13 as clues to show both columns have
exactly two numbers.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 3 Solutions

Year 24 — Academic Year 2012–2013
www.usamts.org

Suppose now that R6C5, in the intersection of the row and column with 20, had a number
a. Then the second number in row 6 must be 20 − a, and the same is true of column 5.
Since we can’t have the same number twice, this is a contradiction, so R6C5 cannot have a
number. Similarly, R7C6 cannot have a number either.
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Looking at rows 6 and 7 again, and accounting for the fact
that columns 2 and 3 can’t have numbers in these two rows,
we notice that column 1 can have at most one number, and the
only way to fit 3 numbers in the last five columns without any
touching is to put a number in each of column 4, column 6, and
column 8. Above, we determined R7C6 cannot have a number,
so the only place for a number in column 6 is R6C6; call this
number A. Now consider how we might fit four numbers in
columns 5 and 6. The first four rows can have at most two
numbers. Row 6 has a number, so the only place for the fourth
number is row 8. Above, we determined that the only number in rows 1 and 8 that can
occur outside of columns 2 and 3 is a 2. Therefore, a 2 appears in either R8C5 or R8C6.
This means row 8 has the 1 and 2 and row 1 has the 3. The shown image summarizes our
deductions so far.

We know row 7 has two numbers, but there are only two spaces that remain. Therefore
these two spaces, R7C4 and R7C8, have numbers. This means the two cells in row 6 with
numbers are R6C1 and R6C6. Also, to avoid touching R7C4, the 2 must go in R8C6. Since
column 6 must sum to 13, its second number must be 11, which is the value of A in R6C6.
Then in row 6, with sum 20, the second number in R6C1 must be a 9. Now notice that
the only way to fit two numbers into column 5 is to put them both in R2C5 and R4C5.
Furthermore, since two distinct numbers from 1 to 12 can sum to at most 23, column 1 must
have at least three numbers, and the only way to fit them is to use rows 2, 4, 6.
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At this point, we have determined the positions of eleven
numbers, and there is only one more. Currently column 8 has
only one number, but it needs two since the 11 has been placed
already. Similarly, row 4 has only two numbers, and the only
two number combinations summing to 21 are 9+12 and 10+11.
Since the 11 and 9 have been used, neither works, so it needs a
third number. Combining these, we see the 12th number must
be in R4C8. The image shows the grid with all numbers placed
and gives names to all of the numbers which we have yet to
determine the value of.
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Notice that B is the only number not clued by any of the column sums. The column
sums total to 72, which is 6 less than 78, the sum of the numbers 1 through 12. Therefore
B = 6. Using the 13 clue in row 7 and the 11 clue in column 8, we then get C = 7 and
H = 4.

The four numbers that remain are 5, 8, 10, 12. We have D+E = 20, E+G = 21−4 = 17,
and F + G = 24− 9 = 15. By considering the possible sums of pairs of these four numbers,
all of which are distinct, we find that D,E can only be 8, 12 in some order, E,G are 5, 12
in some order, and F,G are 5, 10 in some order. Together, this information gives D = 8,
E = 12, G = 5, and F = 10. This reaches the solved grid shown below, which is the only
answer to the problem.
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Remark: As noted, this solution did not make use of the 18 clue in row 2. If one takes
it into account, then the row clues sum to 78, so there can be no numbers in rows 3 and 5.
This provides some alternate, easier methods to find the positions of the twelve numbers in
the grid.
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2/3/24. Palmer and James work at a dice factory, placing dots on dice. Palmer builds his
dice correctly, placing the dots so that 1, 2, 3, 4, 5, and 6 dots are on separate faces. In a
fit of mischief, James places his 21 dots on a die in a peculiar order, putting some nonneg-
ative integer number of dots on each face, but not necessarily in the correct configuration.
Regardless of the configuration of dots, both dice are unweighted and have equal probability
of showing each face after being rolled.

Then Palmer and James play a game. Palmer rolls one of his normal dice and James
rolls his peculiar die. If they tie, they roll again. Otherwise the person with the larger roll
is the winner. What is the maximum probability that James wins? Give one example of a
peculiar die that attains this maximum probability.

Solution

Let p be the probability James wins the game after it ends. Note that if Palmer and James
tie on a roll, then by definition James has probability p of winning in the subsequent rolls
that follow. Let f(k) be the probability that if James rolls a k on his die, he will eventually
be the winner. Note that f(0) = 0 and f(k) = 1 for k > 6. For k ∈ {1, 2, 3, 4, 5, 6}, we have

f(k) = (k−1)+p
6

. This is because Palmer’s die has k−1 numbers less than k, and there is also
a 1

6
chance of tying. Then

p =
f(a1) + f(a2) + · · ·+ f(a6)

6
.

Suppose James has exactly m faces with a positive number of dots on his die. Notice that
if m ≤ 3, then at least half of the faces on James’s die lose automatically, and his probability
of winning is at most 1

2
. For m ∈ {4, 5, 6}, assume a1, a2, . . . , am are the nonzero faces of the

die and note that f(k) ≤ (k−1)+p
6

for all k > 0. Then we have

p =
f(a1) + f(a2) + · · ·+ f(am)

6
≤

m∑
i=1

(ai − 1) + p

36
=

21−m + mp

36
.

This simplifies to p ≤ 21−m
36−m

. For m ∈ {4, 5, 6}, the maximum value this expression takes is
17
32

. As this is higher than 1
2
, we have that p ≤ 17

32
in all cases.

We now construct a die obtaining this probability. Note that our bound f(k) ≤ (k−1)+p
6

has equality if k ∈ {1, 2, 3, 4, 5, 6} and is a strict inequality if k > 6. Let a5 = a6 = 0 and
a1, a2, a3, a4 be numbers in {1, 2, 3, 4, 5, 6} summing to 21, such as 6, 6, 6, 3. Then p = 17+4p

36
,

which simplifies to p = 17
32

. Therefore the upper bound we found is achievable, and this is
the maximum probability.

Remark: Using the result of the last paragraph, we can verify that a die obtains the
maximum probability 17

32
only when (a1, a2, a3, a4, a5, a6) is a permutation of one of

(6, 6, 6, 3, 0, 0), (6, 6, 5, 4, 0, 0), (6, 5, 5, 5, 0, 0).
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3/3/24. In quadrilateral ABCD, ∠DAB = ∠ABC = 110◦, ∠BCD = 35◦, ∠CDA = 105◦,
and AC bisects ∠DAB. Find ∠ABD.

Solution

Take E on BC so that DE is parallel to AB. Since ∠BAD = ∠ABE and AB is
parallel to DE, quadrilateral ABED is an isosceles trapezoid, which means it is cyclic, so
∠ABD = ∠AED.

Also, ∠DEC = ∠ABE = 110◦, and ∠CDE = 180◦ −∠DEC −∠ECD = 180◦ − 110◦ −
35◦ = 35◦, so triangle CDE is isosceles with CE = DE.

A

B

C

D

E

110◦

110◦

110◦

35◦

35◦

Since ∠CAD = 1
2
∠BAD = 1

2
∠CED, A lies on the circle centered at E with radius

CE = DE, so ∠AED = 2∠ACD. From triangle ACD, ∠ACD = 180◦−∠CAD−∠ADC =
180◦ − 55◦ − 105◦ = 20◦, so ∠AED = 2 · 20◦ = 40◦, which means ∠ABD = 40◦.
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4/3/24. Denote by bxc the greatest integer less than or equal to x. Let m ≥ 2 be an integer,
and let s be a real number between 0 and 1. Define an infinite sequence of real numbers
a1, a2, a3, . . . by setting a1 = s and ak = mak−1 − (m− 1)bak−1c for all k ≥ 2. For example,
if m = 3 and s = 5

8
, then we get a1 = 5

8
, a2 = 15

8
, a3 = 29

8
, a4 = 39

8
, and so on.

Call the sequence a1, a2, a3, . . . orderly if we can find rational numbers b, c such that
banc = bbn + cc for all n ≥ 1. With the example above where m = 3 and s = 5

8
, we get an

orderly sequence since banc =
⌊
3n
2
− 3

2

⌋
for all n. Show that if s is an irrational number and

m ≥ 2 is any integer, then the sequence a1, a2, a3, . . . is not an orderly sequence.

Solution

Let {z} denote the fractional part of a real number z, and note that {z} = z − bzc. We
rewrite the given recurrence as

ak = bak−1c+ m{ak−1}.

Let the decimal expansion of {s} in base m be 0.d1d2d3 . . ., written as (0.d1d2d3 . . .)m, where
0 ≤ di ≤ m− 1 for all i and the sequence is not eventually constant at m− 1. First we show
by induction that

{ak} = (0.dkdk+1dk+2 . . .)m.

The base case k = 1 is true by how we’ve defined the dk. Suppose it is true for k. No-
tice that if we take the fractional part of both sides of the recurrence, we get {ak+1} =
{mak}. Furthermore, m · (0.dkdk+1dk+2 . . .)m = (dk.dk+1dk+2 . . .)m, which has fractional part
(0.dk+1dk+2dk+3 . . .)m as desired.

From the above claim, we obtain that bm{ak}c = dk. Taking the floor of both sides of
the recurrence, we have

bakc = bak−1c+ bm{ak−1}c.

The last term is equal to dk−1. Therefore,

bakc − bak−1c = dk−1. (1)

Suppose the sequence a1, a2, a3, . . . is orderly. We will show this implies that s is rational,
which will finish the problem. We know there exists rational numbers b and c such that
banc = bbn + cc. Let q be a positive integer such that qb is an integer, which exists since b
is rational. Then we have that bb(n + q) + cc = bbn + cc+ bq. Therefore,

ban+q+1c − ban+qc = ban+1c − banc

for all n, and hence by (1) we get dn+q = dn for all n. This means the sequence d1, d2, d3, . . .
is periodic, which means that s is rational. This completes the proof.
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5/3/24. Let P and Q be two polynomials with real coefficients such that P has degree greater
than 1 and

P (Q(x)) = P (P (x)) + P (x).

Show that P (−x) = P (x) + x.

Solution

Let n,m be the respective degrees of P,Q, and note that n > 1. From the given equation
we have that the degree of P (Q(x)) is mn and the degree of P (P (x))+P (x) is n2. Therefore
m = n. Let

P (x) = pnx
n + pn−1x

n−1 + · · ·+ p0, Q(x) = qnx
n + qn−1x

n−1 + · · ·+ q0.

Here pn, qn are nonzero. Consider the coefficient of xn2
for each side of the given equation.

Since n > 1, the P (x) term of the given equation will not affect this coefficient, so we have
pn · pnn = pn · qnn. Since these are real numbers, pn = ±qn. We break into two cases:

Case 1: pn = qn. We show by strong induction on k that pn−k = qn−k for 0 ≤ k ≤ n− 1.
The base case k = 0 was assumed for this case. Given it is true for all values less than a
certain k, consider the coefficient of xn2−k in the given equation. Note that since k ≤ n− 1
and n > 1, we have n2−k > n, so the P (x) term will not affect this coefficient. We compute
that

P (Q(x)) = pn(Q(x))n + pn−1(Q(x))n−1 + · · ·+ p0,

= pn(qnx
n + qn−1x

n−1 + · · ·+ q0)
n + pn−1(qnx

n + qn−1x
n−1 + · · ·+ q0)

n−1 + · · ·+ p0.

Because n2 − k > n(n− 1), the only term that will contribute to the xn2−k coefficient is the
term pn(Q(x))n. We can expand this using the multinomial theorem, obtaining

pn(Q(x))n =
∑

0≤i1,i2,...,in≤n

pnqi1qi2 · · · qinxi1+i2+···+in .

Let Ak be the coefficient of xn2−k in this expansion. Then we have

Ak =
∑

i1+i2+···+in=n2−k

pnqi1qi2 · · · qin .

Notice that the only time any terms on the right side are not from the set qn, qn−1, . . . , qn−k+1

are when n− 1 of the ij are equal to n and the last one is equal to n− k. In all other cases,
all terms in the sum of the ij must be at least n− k + 1.

Let Bk be the xn2−k coefficient of P (P (x)). By applying the same method of reasoning
to P (P (x)) that we used for P (Q(x)), we find that

Bk =
∑

i1+i2+···+in=n2−k

pnpi1pi2 · · · pin .
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But Ak = Bk. Furthermore, since pn−j = qn−j for all 0 ≤ j < k, when we set Ak and Bk

equal, all terms of the sum will cancel except those terms where n− 1 of the ij equal n and
the remaining ij is equal to n− k. Accounting for only these terms of the sum, we get

npnq
n−1
n qn−k = npnnpn−k,

Cancelling the npnq
n−1
n from both sides using pn = qn, we are left with qn−k = pn−k, com-

pleting the inductive step.

Since the only coefficient that is not necessarily equal in P (x) and Q(x) is the constant
term, we have Q(x)−P (x) = a for some real number a. We can verify P (x) = Q(x) cannot
satisfy the given equation for nonzero polynomials, so a 6= 0. The given equation becomes
P (P (x) + a) = P (x) + P (P (x)). Then letting y = P (x), we have P (y + a) − P (y) = y.
Since P is nonconstant, y can take values in an infinite set, so since this is an equality of
polynomials, P (y+a)−P (y) = y identically. The left side is a finite difference of P , so it has
degree n−1 exactly. Since the right side has degree 1, n = 2, and thus P (x) = p2x

2+p1x+p0.
Taking the linear coefficient of both sides of P (x + a)− P (x) = x, we get 2p2a = 1. Setting
the constant term of P (x + a)− P (x) equal to 0 and using 2p2a = 1, we get that p1 = −1

2
.

Notice that P (−x)− P (x) = −2p1x = x, so the required identity is satisfied in this case.

Case 2: pn = −qn. Observe that Q(x) − P (x) divides (Q(x))k − (P (x))k for any k.
Therefore by taking an appropriate linear combination of terms of the form (Q(x))k−(P (x))k,
we find that Q(x)−P (x) divides P (Q(x))−P (P (x)). By substituting the given identity in,
we get that Q(x) − P (x) divides P (x), so Q(x) − P (x) also divides Q(x) by the Euclidean
Algorithm. However, notice that Q(x) − P (x) has degree n since the leading coefficient of
the two polynomials is different. This means the same degree n polynomial divides P (x)
and Q(x), both also degree n polynomials. As a result, P (x) and Q(x) are scalar multiples
of each other. Since pn = −qn, we conclude that P (x) = −Q(x).

Plugging this into the equation in the original problem gets P (−P (x)) = P (P (x))+P (x).
Let y = P (x) to obtain that P (−y) = P (y) + y. This identity is true for an infinite number
of y since P (x) takes values on an infinite set, so therefore it is true for all y, finishing this
case.

Remark: Both of these cases admit solutions for P and Q. In case 1, we can have
P (x) = x2 − x

2
and Q(x) = x2 − x

2
+ 1

2
. In case 2, we can have P (x) = x4 − x

2
and

Q(x) = −x4 + x
2
. Both of these pairs will satisfy P (Q(x)) = P (P (x)) + P (x).

c© 2013 Art of Problem Solving Foundation

www.usamts.org

