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1/1/24. Several children were playing in the ugly tree when suddenly they all fell.

• Roger hit branches A, B, and C in that order on the way down.

• Sue hit branches D, E, and F in that order on the way down.

• Gillian hit branches G, A, and C in that order on the way down.

• Marcellus hit branches B, D, and H in that order on the way down.

• Juan-Phillipe hit branches I, C, and E in that order on the way down.

Poor Mikey hit every branch A through I on the way down. Given only this information, in
how many different orders could he have hit these 9 branches on the way down?

Let “X < Y ” mean that Mikey must hit branch X before branch Y . Then the given
data is:

A < B < C (1),

D < E < F (2),

G < A < C (3),

B < D < H (4),

I < C < E (5).

Combining (1), (3) and the second half of (5) gives

G < A < B < C < E (6),

and combining (2) and the first half of (4) gives

B < D < E < F (7).

Combining (6) and (7), we find that C and D must both be between B and E, but can
appear in either order. So we must have either (8) or (9) below:

G < A < B < C < D < E < F (8),

G < A < B < D < C < E < F (9).

We only have to insert H and I into these chains. H must go after D, and I must go before
C. We now break into cases based on whether (8) or (9) is true.

In case (8): We have 3 choices for where to insert H and 4 choices for where to insert I.
These choices are independent, for a total of 3 · 4 = 12 possibilities.
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In case (9): We have 4 choices for where to insert H and 5 choices for where to insert I.
These choices are independent, but if we place both H and I between D and C, they can go
in either order. Thus we have a total of 4 · 5 + 1 = 21 possibilities.

Thus, there are a total of 12 + 21 = 33 possibilities.
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30

2/1/24. Three wooden equilateral triangles of side length 18 inches
are placed on axles as shown in the diagram to the right. Each axle
is 30 inches from the other two axles. A 144-inch leather band is
wrapped around the wooden triangles, and a dot at the top corner is
painted as shown. The three triangles are then rotated at the same
speed and the band rotates without slipping or stretching. Compute
the length of the path that the dot travels before it returns to its
initial position at the top corner.
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Figure 1

Let a third of a turn of the triangles be called a thirn, and
assume the triangles are turning clockwise. Label the triangles
A,B,C as in Figure 1. After each thirn, the dot’s position will
be exactly 18 inches farther along the perimeter of the band.
Because the band is 144 inches long, it will take 144/18 = 8
thirns for the dot to return to its original position. As this is
an integer, the dot will return to its original position after only
one complete rotation of the band.

During the first thirn, the dot follows the path of the vertex
of triangle A, tracing a third of the circumcircle of triangle A.
The radius of this circle is the distance from center to the vertex of the triangular wheels,
which is 18/

√
3. Thus, the distance traveled by the point is 2π/3 · 18/

√
3 = 4π

√
3 inches.

(See Figure 1.)
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Figure 2

During the second thirn, notice that the distance between
the top corners of triangles A and B will remain 30 inches
throughout the duration of the thirn. The 30 inch part of the
band between these two corners will thus remain parallel to the
sides of the original triangle, and each point along the band will
be translated the same amount as the corners of the triangles
A and B. Figure 2 shows this visually, with the paths of the
triangle corners shown in red, a snapshot of the band’s position
drawn as a black segment between the red arcs, and the blue
arc showing the path of the dot. Since the blue arc traces the
same path shape as the corners of the triangles A and B, the
dot moves the same distance as it did in the first thirn, which is 4π

√
3 inches.
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Figure 3

The dot ends the second thirn 6 inches away from the top
corner of triangle B, which means it is also 6 inches from the
center of triangle B. During the third thirn, the dot stays on
triangle B, tracing a third of a circle with radius whose radius
can be computed to be 6, traveling 2π/3 · 6 = 4π inches. (See
Figure 3.)

For reasoning identical to the second thirn, for the fourth
thirn the dot also moves 4π

√
3 inches, ending up in center of the

bottom section of the band. This means that thirns 5 through
8 are a reflection of thirns 1 through 4, so the total distance

traveled by the dot is 6 · 4π
√

3 + 2 · 4π = (24
√

3 + 8)π . Figure 4 shows the full path the

dot travels.
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Figure 4
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3/1/24. The symmetric difference, 4, of a pair of sets is the set of
elements in exactly one set. For example,

{1, 2, 3}4{2, 3, 4} = {1, 4}.

There are fifteen nonempty subsets of {1, 2, 3, 4}. Assign each subset
to exactly one of the squares in the grid to the right so that the following
conditions are satisfied.

(i) If A and B are in squares connected by a solid line then A4B has exactly one element.

(ii) If A and B are in squares connected by a dashed line then the largest element of A is
equal to the largest element of B.

You do not need to prove that your configuration is the only one possible; you merely need
to find a configuration that satisfies the constraints above. (Note: In any other USAMTS
problem, you need to provide a full proof. Only in this problem is an answer without
justification acceptable.)
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4The image to the left shows a numbering of the 15
boxes that we will refer to in this solution.

Before we begin, we note a certain logical configu-
ration, which we will refer to as an isosceles triangle,
in which we have three squares A,B,C where A,B are
connected by a dashed line and C is connected by a
solid line to each of A and B. An example of an isosce-
les triangle is (A,B,C) = (8, 11, 12). In an isosceles
triangle, not only do A and B have the same max-
imum element x, but C has that maximum element
also. This is because if C had a different maximum
y, then either C∆A = C∆B = {y} (if y > x) or
C∆A = C∆B = {x} (if y < x). Either case implies
A = B, contradicting the condition that all squares have a distinct subset.

By enumerating all of the 15 subsets, we can determine that there are:

• 8 subsets with largest element 4,
• 4 subsets with largest element 3,
• 2 subsets with largest element 2,
• 1 subset with largest element 1.
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Note that squares 8, 11, and 14 must have the same largest element, and since they are
part of isosceles triangles, 12 and 15 must have the same largest element as these three. So
squares 8, 11, 12, 14, and 15 must all have the same largest element. There are not five
subsets with largest element 1, 2, or 3, so largest element of squares 8, 11, 12, 14, and 15
must be 4.

Similarly, squares 1, 5, 6, and 10 all have the same largest element since (1, 6, 5) and
(5, 10, 6) are isosceles triangles. If this largest element were 4, then nine subsets would have
largest element 4, which is too many. On the other hand, there are not four subsets with
largest element 1 or 2. So the largest element of squares 1, 5, 6, and 10 is 3. Squares 2, 3,
and 7 also form an isosceles triangle and have the same largest element. We know where all
sets with largest element 3 are, and this is too many subsets have to have largest element 1
or 2. So squares 2, 3, and 7 must have largest element 4. Out of the three remaining squares,
9 and 13 have a dashed line, so they have largest element 2, and 4 has largest element 1.
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3
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12
4 O

8
4 E

4
1 O

Finally, note that a solid line always joins a set
with an odd number of elements to a set with an even
number of elements, and that seven subsets have an
even number of elements. Therefore, squares 1, 3, 6,
8, 9, 11, 14 have an even number of elements, and the
other squares have an odd number of elements.

The diagram shown collects all the information we
have so far. A number in a box is the largest element,
an “E” means the box’s subset has an even number of
elements, and an “O” means it has an odd number of
elements.

The information in the diagram will drive the rest
of our progress. We immediately get square 4 is {1}. Since we know square 9 has an even
number of elements, it has {1, 2}, while square 13 has {2}. These three squares are all
connected to ones with a higher maximum element, so that maximum element must be the
one added, and squares 3, 5, 14 have sets {1, 4}, {1, 2, 3}, and {2, 4} respectively.

Square 10 is the only other square with maximum element 3 and an odd number of
elements, so it has {3}. Then square 11, which has max element 4, is {3, 4}. The only
square with maximum element 4 and an even number of elements we have yet to determine
is square 8; it must have {1, 2, 3, 4}.

Now consider the possible locations of {4}. It can’t touch {1, 2, 3, 4} eliminating squares
7 and 12. If square 2 has {4}, then there is no way for square 1 to have maximum element
3. Therefore, square 15 has {4}. Likewise, {2, 3, 4} must go in one of 2, 7, and 12 but can’t
touch {1, 4}, so it goes in square 12. This tells us that squares 2 and 7 must contain {1, 2, 4}
and {1, 3, 4} in some order.
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Since square 1 has largest element 3 and not 4, the edge from square 2 to square 1 must
remove a 4, so square 2 has {1, 3, 4} and square 1 has {1, 3}. Then square 6, the last square
with maximum element 3 has {2, 3}. From our determining of square 2, we also now know
that square 7 is {1, 2, 4}. This is the last box we needed to determine. The unique solution
we have found is shown below.
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4/1/24. Let bxc denote the greatest integer less than or equal to x. Let m be a positive integer,
m ≥ 3. For every integer i with 1 ≤ i ≤ m, let

Sm,i =

{⌊
2m − 1

2i−1
n− 2m−i + 1

⌋
: n = 1, 2, 3, . . .

}
.

For example, for m = 3,

S3,1 = {b7n− 3c : n = 1, 2, 3, . . . }
= {4, 11, 18, . . . },

S3,2 =

{⌊
7

2
n− 1

⌋
: n = 1, 2, 3, . . .

}
= {2, 6, 9, . . . },

S3,3 =

{⌊
7

4
n

⌋
: n = 1, 2, 3, . . .

}
= {1, 3, 5, . . . }.

Prove that for all m ≥ 3, each positive integer occurs in exactly one of the sets Sm,i.

Define

f(m, i, n) =
2m − 1

2i−1
n− 2m−i + 1.

so that Sm,i = {bf(m, i, n)c : n = 1, 2, 3, . . .}. Let

Tm,i = {bf(m, i, n)c : n = 1, 2, 3, . . . , 2i−1}.

We claim that Tm,i is the set of numbers less than 2m that end with exactly m − i zeroes
when written in binary. Rewrite f(m, i, n) as

f(m, i, n) =
2m − 1

2i−1
n− 2m−i + 1 = 2m−i(2n− 1) +

2i−1 − n
2i−1

.

On the right side the first term is an integer, and since 1 ≤ n ≤ 2i−1 the second term is
at least 0 and less than 1. Therefore the floor of the expression is equal to the first term,
meaning that bf(m, i, n)c = 2m−i(2n− 1).

A number ends in exactly m − i zeroes if and only if it is an odd multiple of 2m−i, and
we see above that bf(m, i, n)c ranges over the first 2i−1 odd multiples of 2m−i as n ranges
from 1 to 2i−1. The 2i−1th odd multiple is 2m− 2m−i, the last one less than 2m. This proves
our claim that Tm,i is the set of numbers less than 2m which end with exactly m− i 0s when
written in binary.
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Now notice that

f(m, i, n+ 2i−1) =
2m − 1

2i−1
(n+ 2i−1 − 2m−i + 1

=
2m − 1

2i−1
n− 2m−i + 2m

= f(m, i, n) + (2m − 1).

Therefore,
Sm,i = {t+ k(2m − 1) : t ∈ Tm,i, k = 1, 2, 3, . . .}.

This means a number is in Sm,i if and only if its remainder when divided by 2m− 1 is in Tm,i

(where we treat a remainder of 0 as a remainder of 2m − 1). Since each number from 1 to
2m − 1 occurs in exactly one of the Tm,i, this means every positive integer occurs in exactly
one of the Sm,i, as desired.
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5/1/24. An ordered quadruple (y1, y2, y3, y4) is quadratic if there exist real
numbers a, b, and c such that

yn = an2 + bn+ c

for n = 1, 2, 3, 4.

Prove that if 16 numbers are placed in a 4× 4 grid such that all four rows are quadratic
and the first three columns are also quadratic then the fourth column must also be quadratic.

(We say that a row is quadratic if its entries, in order, are quadratic. We say the same
for a column.)

We start with an important lemma.

Lemma: (y1, y2, y3, y4) is quadratic if and only if y4 − 3y3 + 3y2 − y1 = 0.

Proof: Suppose (y1, y2, y3, y4) is quadratic via the quadratic polynomial

f(x) = ax2 + bx+ c

so that yn = f(n) for n = 1, 2, 3, 4. Note that for all n,

f(n+ 1)− f(n) = a(n+ 1)2 + b(n+ 1) + c− (an2 + bn+ c) = 2an+ a+ b.

Let g(n) = 2an+ a+ b. Then

g(n+ 1)− g(n) = 2a(n+ 1) + a+ b− (2an+ a+ b) = 2a.

Plugging in n = 3 gives

2a = g(3)− g(2) = (f(3)− f(2))− (f(2)− f(1)) = y3 − 2y2 + y1, (1)

and plugging in n = 4 gives

2a = g(4)− g(3) = (f(4)− f(3))− (f(3)− f(2)) = y4 − 2y3 + y2. (2)

Thus y3 − 2y2 + y1 = y4 − 2y3 + y2, hence y4 − 3y3 + 3y2 − y1 = 0.

Conversely, it is well-known given any triple (y1, y2, y3) we can find a quadratic f(x) =
ax2 + bx + c such that f(n) = yn for n = 1, 2, 3. Then equations (1) and (2) tell us that
f(4)− 3y3 + 3y2 − y1 = 0. So we must have f(4) = y4, meaning (y1, y2, y3, y4) is quadratic.
2

Let ai,j be the number in the ith row and jth column for 1 ≤ i, j ≤ 4. Define for each
i = 1, 2, 3, 4:

ri = ai,1 − 3ai,2 + 3ai,3 − ai,4, ci = a1,i − 3a2,i + 3a3,i − a4,i.
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By the lemma, row i is quadratic if and only if ri = 0, and column i is quadratic if and only
if ci = 0. We are given that ri = 0 for all i and ci = 0 for i ∈ {1, 2, 3}, and we wish to show
c4 = 0.

Define the two quantities

R = r1 − 3r2 + 3r3 − r4, C = c1 − 3c2 + 3c3 − c4.

Suppose we expand out each of these sums in terms of the ai,j. We find that

R = a1,1 − 3a1,2 + 3a1,3 − a1,4

− 3a2,1 + 9a2,2 − 9a2,3 + 3a2,4

+ 3a3,1 − 9a3,2 + 9a3,3 − 3a3,4

− a1,1 + 3a1,2 − 3a1,3 + a1,4 = C

(The coefficient in front of ai,j can be written explicitly as
(

3
i−1

)(
3

j−1

)
(−1)i+j. Notice that

this is symmetric in i and j; this is the reason behind R and C giving the same expression.)

Thus, we have learned that R = C. Since r1 = r2 = r3 = r4 = 0 and c1 = c2 = c3 = 0,
we have from the original definitions of R and C that R = 0 and C = −c4. This gives us
c4 = 0, as desired.

Remark : The ideas in this solution can be used to solve a generalized version of this
problem, where the grid is n× n and the values of n rows and n− 1 columns are the first n
values of a polynomial of degree at most n− 2.
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