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1/4/21. Archimedes planned to count all of the prime numbers between 2 and 1000 using the
Sieve of Eratosthenes as follows:

(a) List the integers from 2 to 1000.
(b) Circle the smallest number in the list and call this p.
(c) Cross out all multiples of p in the list except for p itself.
(d) Let p be the smallest number remaining that is neither circled nor crossed out. Circle p.
(e) Repeat steps (c) and (d) until each number is either circled or crossed out.

At the end of this process, the circled numbers are prime and the crossed out numbers
are composite.

Unfortunately, while crossing off the multiples of 2, Archimedes accidentally crossed out
two odd primes in addition to crossing out all the even numbers (besides 2). Otherwise,
he executed the algorithm correctly. If the number of circled numbers remaining when
Archimedes finished equals the number of primes from 2 to 1000 (including 2), then what is
the largest possible prime that Archimedes accidentally crossed out?

Let q and r be the two primes that Archimedes accidentally crossed out, with q < r. Our
goal is to maximize r subject to the conditions of the problem.

The composite numbers that will not get crossed out are q2, qr, and r2. Since we must
have two uncrossed composite numbers between 2 and 1000 (to make up for the 2 primes
that accidentally got crossed out), we must have

q2 < qr < 1000 < r2.

Since q ≥ 3 we must have r ≤ 1000
3

. The largest prime number less than 1000
3

is 331, and
indeed, q = 3 and r = 331 works: if they get crossed out on the first step, then 9 and 993
will not get crossed out and will mistakenly be considered primes. Thus, the answer is 331 .
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2/4/21. Let a, b, c, d be four real numbers such that

a+ b+ c+ d = 8,

ab+ ac+ ad+ bc+ bd+ cd = 12.

Find the greatest possible value of d.

We factor d out of the second equation, and use the fact (from the first equation) that
a+ b+ c = 8− d:

12 = ab+ ac+ bc+ d(a+ b+ c) = ab+ ac+ bc+ d(8− d). (?)

However, we know that a2 + b2 + c2 ≥ ab + ac + bc: this is an application of what is
known as the Rearrangement Inequality, and it also follows by expanding and simplifying
(a− b)2 + (b− c)2 + (c− a)2 ≥ 0. Thus, we have

(a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ ac+ bc) ≥ 3(ab+ ac+ bc), (??)

giving

ab+ ac+ bc ≤ 1

3
(a+ b+ c)2 =

1

3
(8− d)2.

Therefore, (?) becomes

12 ≤ 1

3
(8− d)2 + d(8− d),

which simplifies to d2 − 4d− 14 ≤ 0. The largest value of d satisfying this inequality is the
larger root of d2 − 4d− 14 = 0, which is d = 2 + 3

√
2. We verify that equality holds in (??)

when a = b = c, giving

a = b = c =
1

3
(8− d) =

1

3
(6− 3

√
2) = 2−

√
2,

and it is easily checked that

ab+ac+ad+bc+bd+cd = 3(2−
√

2)2+3(2−
√

2)(2+3
√

2) = 3((6−4
√

2)+(−2+4
√

2)) = 12,

as necessary. Therefore, the answer is 2 + 3
√

2 .
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3/4/21. I give you a deck of n cards numbered 1 through n. On each turn, you take the top
card of the deck and place it anywhere you choose in the deck. You must arrange the cards
in numerical order, with card 1 on top and card n on the bottom. If I place the deck in a
random order before giving it to you, and you know the initial order of the cards, what is the
expected value of the minimum number of turns you need to arrange the deck in order?

3
6
5
1
2
4

In any arrangement, there will be k cards at the bottom (where 1 ≤ k ≤ n) that
are in ascending numerical order, such that the (k+ 1) cards at the bottom (if k < n)
are not in ascending numerical order. (If k = n then the entire deck is already in
correct order, and 0 turns are required.) For example, if the deck is arranged as at
right (for n = 6), then k = 3 since the 3 bottom cards are in ascending order—1, 2, 4—
but the 4 bottom cards—5, 1, 2, 4—are not. Since the (k + 1)st card must be moved
to its correct position, all of the cards above the bottom k cards must be moved at
least once. We claim that this is sufficient: on the ith turn, move the top card to its correct
position among the bottom k − 1 + i cards (which by assumption are already in the proper
order). Thus n− k turns are required. For example, below we show the sequence of moves
for the deck at right: note that after i turns the bottom 3+ i cards are in order, but the card
immediately above this group is not (the cards at the bottom in correct order are boxed):

3
6
5

1

2

4

→

6
5

1

2

3

4

→

5

1

2

3

4

6

→

1

2

3

4

5

6

Let En be the expected number of turns required for a deck of size n. We complete the
solution via two different methods:

Method 1 : Unless the deck is already in correct order, we must move the top card. What
remains, disregarding the card that we just moved (which is now in its correct position in
the group at the bottom of the deck) is a deck of size n−1, which will take an expected En−1

turns to arrange correctly. So we require an expected 1 + En−1 number of turns. However,
there is a 1

n!
probability that the deck will start in its correct order, in which case we will

not even require the first turn. Thus, we have

En = 1 + En−1 −
1

n!
.

Starting with E1 = 0, we have

En = (n− 1)−
n∑
k=2

1

k!
= n−

n∑
k=1

1

k!
.
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Method 2 : Suppose the k cards at the bottom are in ascending numerical order, but the
(k + 1) cards at the bottom are not, so that n− k turns are required. To count the number
of such initial arrangements, we note that for each of the

(
n
k+1

)
choices of k + 1 cards, there

are k ways to order the cards such that the final k are in ascending order, but the final
k+ 1 are not (all such arrangements can be formed by starting with the k+ 1 cards in order,
then moving one of the final k cards to the top of this group of k + 1 cards). There are
then (n− (k + 1))! ways to order the remaining cards atop these k + 1 cards. So, there are
k(n− (k + 1))!

(
n
k+1

)
such arrangements, and we require n− k turns for each.

Summing over all possible k, we have

En =

n−1∑
k=1

(n− k)k(n− (k + 1))!

(
n

k + 1

)
n!

=

n−1∑
k=1

(n− k)k
n!

(k + 1)!

n!
=

n−1∑
k=1

nk − k2

(k + 1)!
.

We can write this in a more appealing form with some manipulation that leads to telescoping
series:

En =
n−1∑
k=1

nk − k2

(k + 1)!

=
n−1∑
k=1

n(k + 1)− n− k(k + 1) + k

(k + 1)!

=
n−1∑
k=1

n(k + 1)− n− k(k + 1) + (k + 1)− 1

(k + 1)!

=
n−1∑
k=1

(
n

k!
− n

(k + 1)!

)
+

n−1∑
k=1

(
− 1

(k − 1)!
+

1

k!

)
−

n−1∑
k=1

1

(k + 1)!
.

The first two summations telescope, and we are left with

En =
n

1!
− n

n!
− 1

0!
+

1

(n− 1)!
−

n−1∑
k=1

1

(k + 1)!

= n− 1

(n− 1)!
− 1 +

1

(n− 1)!
−

n−1∑
k=1

1

(k + 1)!

= n−
n∑
k=1

1

k!
.

Note: there is no closed form for the above summation, but, using calculus, we can show
that En is very close to n + 1 − e as n gets large, where e ≈ 2.71828 . . . is the base of the
natural logarithm.
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4/4/21. Let S be a set of 10 distinct positive real numbers. Show that there exist x, y ∈ S
such that

0 < x− y < (1 + x)(1 + y)

9
.

Let the set be {x1, x2, . . . , x10}, where 0 < x1 < x2 < · · · < x10. Let

ai =
9

xi + 1
,

so 0 < a10 < a9 < · · · < a1 < 9 and xi =
9− ai
ai

.

Let i < j. Then xi < xj, and

xj − xi ≤
(1 + xi)(1 + xj)

9
⇔ 9− aj

aj
− 9− ai

ai
≤

9
ai
· 9
aj

9

⇔ 9ai − 9aj
aiaj

≤ 9

aiaj

⇔ ai − aj ≤ 1.

Suppose that no such x and y exist that satisfy the given condition. Then a1 − a2 > 1,
a2 − a3 > 1, . . . , a9 − a10 > 1. Adding these inequalities, we get a1 − a10 > 9. But a1 < 9
and a10 > 0, so a1 − a10 < 9, a contradiction. Therefore, such x and y must exist.
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5/4/21. Tina and Paul are playing a game on a square S. First, Tina selects a point T inside S.
Next, Paul selects a point P inside S. Paul then colors blue all the points inside S that are
closer to P than T . Tina wins if the blue region thus produced is the interior of a triangle.
Assuming that Paul is lazy and simply selects his point at random (and that Tina knows
this), find, with proof, a point Tina can select to maximize her probability of winning, and
compute this probability.

A B

CD

P

T

`

Let the square be ABCD, and for simplicity assume it has
side length 1. Let Tina’s point be T and Paul’s be P , and
let the perpendicular bisector of PT be `. All points on the
same side of ` as T are closer to T than to P , and conversely
all points on the same side of ` as P are closer to P than to
T . Thus, the blue region is the intersection of the interior of
the square with the half-plane containing P determined by `.
This is a triangle if and only if exactly 1 of {A,B,C,D} is
in this half-plane, meaning that Tina wins if and only if T is
closer than P to three of the four vertices of the square. This
occurs if and only if T is closer than P to either pair of opposite vertices (either A and C,
or B and D).

A B

CD

T

WB(T )

WD(T )

T ′

Consider the circle centered at A with radius AT and
the circle centered at C with radius CT ; we call these
ΓA(T ) and ΓC(T ). The point T is closer than P to both
A and C if and only if P is outside both circles, since
such a location of P gives PA > TA and PC > TC.
We call the two regions inside the square, but outside
both circles, “winning regions,” because Tina wins if
Paul chooses a point in either of these regions. There
is a winning region WB(T ) of points P for which P is
closer to B than T but where T is closer to each of A,
C, and D than P , as shown in the diagram. Similarly,
there is a winning region WD(T ). Because the diagram
is symmetric about AC, we have WB(T ) ∼= WD(T ). There is a similar pair of winning regions
WA(T ) and WC(T ) in which T is closer than P to both B and D.

We claim that Tina maximizes the total area of the winning regions by choosing T to be
the center of the square. We show this separately for the pair A,C and the pair B,D, in
two steps.

For any choice of T not on AC, let T ′ be the intersection of AC and ΓA(T ). We claim
that WB(T ′) ⊃ WB(T ) and WD(T ′) ⊃ WD(T ). This is clear because ΓC(T ′) lies inside
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ΓC(T ), and hence the winning regions of T ′ are larger than those of T , since they contain an
additional region that is inside ΓC(T ) but outside ΓC(T ′). Thus, we conclude that for any
point T not on AC, there is a point T ′ ∈ AC such that the total area of WB(T ′) and WD(T ′)
is greater than the total area of WB(T ) and WD(T ). Therefore, the point that maximizes
the winning regions adjacent to B and D must lie on the diagonal AC.

A B

CD

T

WB(T )

WD(T )
Next, we show that of all points on AC, Tina maxi-

mizes the area of the winning regions WB(T ) and WD(T )
by choosing the center of the square. Note that if T ∈
AC, then the area of the winning regions is the entire
area of the square minus the areas of the portions of
ΓA(T ) and ΓC(T ) lying inside the square (the white ar-
eas in the diagram). So our goal is to minimize the white
areas. If AT and CT are both less than or equal to 1,
this white region is two quarter-circles whose radii sum
to the diagonal of the square, which is

√
2. Thus, if

the radius of ΓA(T ) is r, then the radius of ΓC(T ) is√
2 − r, and the combined area of the white regions is

π
4
(r2 + (

√
2 − r)2) = π

4
(2r2 − 2

√
2r + 2). This quadratic is minimized at r =

√
2

2
, which is

when each radius is half the diagonal, or
√

2/2, giving a white area of

2 · 1

4
· π

(√
2

2

)2

=
π

4
.

If AT > 1 or CT > 1, then the corresponding white region is not a quarter circle; however,
in this case the white region is larger than a quarter-circle of radius 1, which has area π

4
, so

the white region is still larger than the minimum area.

Since the center point of the square maximizes the sum of the areas of the winning regions
WB(T ) and WD(T ), and by symmetry simultaneously maximizes the sum of the areas of the
winning regions WA(T ) and WC(T ), and these regions are all disjoint, we conclude that the
center point is the optimal point for Tina to select. As computed above, the regions WB(T )
and WD(T ) have a total area of 1 − π

4
, as do the regions WA(T ) and WC(T ), so the total

winning area for Tina is 2(1− π
4
) = 2− π

2
. Thus, since the total area of the square is 1, the

probability of Tina winning is just the total area of the winning regions, or 2− π

2
.
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