

5/4/18. A sequence of positive integers $(x_1, x_2, \ldots, x_{2007})$ satisfies the following two conditions:

- (1) $x_n \neq x_{n+1}$ for $1 \le n \le 2006$, and
- (2) $A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$ is an integer for $1 \le n \le 2007$.

Find the minimum possible value of A_{2007} .

Credit This problem was a former proposal for the Canadian Mathematical Olympiad.

Comments Finding the optimal sequence is not difficut, but a high degree of rigor and careful reasoning must be employed to show conclusively that you have the minimum value. In particular, using a greedy algorithm is not sufficient. Both conditions (1) and (2) must be used effectively. *Solutions edited by Naoki Sato.*

Solution 1 by: Gaku Liu (11/FL)

We claim that the minimum value of A_n is $\left\lceil \frac{n+1}{2} \right\rceil$. This value is achieved for the sequence

$$x_n = \begin{cases} \frac{n+1}{2} & \text{for odd } n, \\ \\ \frac{3n}{2} & \text{for even } n. \end{cases}$$

Indeed, if $n \ge 2$ is even, then $x_{n-1} = n/2$ and $x_{n+1} = (n+2)/2$, both of which are less than $x_n = 3n/2$. Hence, no two consecutive terms are equal, so condition (1) is satisfied. For even n,

$$A_n = \frac{(x_1 + x_3 + \dots + x_{n-1}) + (x_2 + x_4 + \dots + x_n)}{n}$$

= $\frac{(1 + 2 + \dots + n/2) + (3 + 6 + \dots + n/2)}{n}$
= $\frac{4(1 + 2 + \dots + n/2)}{n}$
= $\frac{4 \cdot n/2 \cdot (n+2)/2}{2n}$
= $\frac{n+2}{2} = \left\lceil \frac{n+1}{2} \right\rceil$,

and for odd n,

$$A_{n} = \frac{(x_{1} + x_{3} + \dots + x_{n-2}) + (x_{2} + x_{4} + \dots + x_{n-1}) + x_{n}}{n}$$

$$= \frac{[1 + 2 + \dots + (n-1)/2] + [3 + 6 + \dots + 3(n-1)/2] + (n+1)/2}{n}$$

$$= \frac{4[1 + 2 + \dots + (n-1)/2] + (n+1)/2}{n}$$

$$= \frac{4 \cdot 1/2 \cdot (n-1)/2 \cdot (n+1)/2 + (n+1)/2}{n}$$

$$= \frac{n+1}{2} = \left[\frac{n+1}{2}\right].$$

We now prove this is the minimum through induction. It is true for n = 1, because the minimum of A_1 is $1 = \lfloor \frac{1+1}{2} \rfloor$. For n = 2, if $A_2 = 1$, then $x_1 + x_2 = 2 \Rightarrow x_1 = x_2 = 1$, which contradicts (1). Hence, the minimum of A_2 is $2 = \lfloor \frac{2+1}{2} \rfloor$.

Now, assume that $A_{2m} \geq \left\lceil \frac{2m+1}{2} \right\rceil = m+1$ for some positive integer m. Let $S_n = x_1 + x_2 + \cdots + x_n$. In particular, S_n must be a multiple of n. We have $S_{2m} = 2mA_{2m} \geq 2m(m+1) = 2m^2 + 2m$. Also,

$$2m^2 + m < 2m^2 + 2m < 2m^2 + 3m + 1$$

$$\Rightarrow \quad m(2m+1) < 2m^2 + 2m < (m+1)(2m+1),$$

so the least multiple of 2m + 1 greater than $2m^2 + 2m$ is (m + 1)(2m + 1). Since $S_{2m+1} > S_{2m} \ge 2m^2 + 2m$, we have $S_{2m+1} \ge (m + 1)(2m + 1)$, so

$$A_{2m+1} \ge m+1 = \left\lceil \frac{(2m+1)+1}{2} \right\rceil.$$

Note that $2m^2 + 2m = m(2m+2)$ is a multiple of 2m + 2. The next greatest multiple of 2m + 2 is (m+1)(2m+2). Suppose that $S_{2m+2} = (m+1)(2m+2) = 2m^2 + 4m + 2$. Then

$$2m^{2} + 3m + 1 < 2m^{2} + 4m + 2 < 2m^{2} + 5m + 2$$

$$\Rightarrow \quad (m+1)(2m+1) < 2m^{2} + 4m + 2 < (m+2)(2m+1),$$

so the greatest multiple of 2m + 1 less than $2m^2 + 4m + 2$ is (m + 1)(2m + 1). Since $S_{2m+1} < S_{2m+2} = 2m^2 + 4m + 2$, we have $S_{2m+1} \le (m + 1)(2m + 1)$. But we have already shown that $S_{2m+1} \ge (m + 1)(2m + 1)$, so $S_{2m+1} = (m + 1)(2m + 1)$.

Also,

$$2m^2 + 2m < 2m^2 + 3m + 1 < 2m^2 + 4m$$

$$\Rightarrow \quad (m+1)2m < 2m^2 + 3m + 1 < (m+2)2m,$$

USA Mathematical Talent Search Solutions to Problem 5/4/18 www.usamts.org

so $2m^2 + 2m$ is the greatest multiple of 2m less than S_{2m+1} . Since $S_{2m} < S_{2m+1} = (m+1)(2m+1)$, we have $S_{2m} \le (m+1)2m$. But $S_{2m} \ge (m+1)2m$, so $S_{2m} = (m+1)2m$. Then $x_{2m+1} = S_{2m+1} - S_{2m} = (m+1)(2m+1) - (m+1)2m = m+1$, and $x_{2m+2} = S_{2m+2} - S_{2m+1} = (m+1)(2m+2) - (m+1)(2m+1) = m+1$, which contradicts (1).

Hence, $S_{2m+2} \ge (m+2)(2m+2)$, so

$$A_{2m+1} \ge m+2 = \left\lceil \frac{(2m+2)+1}{2} \right\rceil,$$

completing the induction. Therefore, the minimum value of A_{2007} is $\left\lceil \frac{2007+1}{2} \right\rceil = 1004$.