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4/4/19. Suppose that w, x, y, z are positive real numbers such that w + x < y + z. Prove
that it is impossible to simultaneously satisfy both

(w + x)yz < wx(y + z) and (w + x)(y + z) < wx + yz.

Comments Since we want to show that not all three inequalities can hold simultaneously,
we can approach the problem by using contradiction. Solutions edited by Naoki Sato.

Solution 1 by: Andy Zhu (11/NJ)

For the sake of contradiction, suppose that all the given inequalities hold. Multiplying
the inequalities wx(y + z) > (w + x)yz and wx + yz > (w + x)(y + z), we get

wx(y + z)(wx + yz) > yz(w + x)2(y + z).

By the AM-GM inequality, (w + x)2 ≥ 4wx, so

wx(y + z)(wx + yz) > yz(w + x)2(y + z) ≥ 4wxyz(y + z).

Dividing by wx(y + z) (which is positive), we get

wx + yz > 4yz,

so wx > 3yz.

Also, since y + z > w + x and wx + yz > (w + x)(y + z),

wx + yz > (w + x)(y + z) > (w + x)2 ≥ 4wx,

so yz > 3wx. Multiplying the inequalities wx > 3yz and yz > 3wx, we get wxyz > 9wxyz,
contradiction. Thus, not all the given inequalities can hold simultaneously.
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Solution 2 by: Kristin Cordwell (11/NM)

We argue by contradiction. Suppose that the positive real numbers w, x, y, z satisfy all
the given inequalities, so w + x < y + z,

(w + x)yz < wx(y + z) ⇒ wxy + wxz − wyz − xyz > 0,

and
(w + x)(y + z) < wx + yz ⇒ wx + yz − wy − xy − wz − xz > 0.

Now consider the polynomial p(s) = (s − w)(s − x)(s + y)(s + z). Expanding this, we
have

p(s) = s4 + (y + z − w − x)s3 + (wx + yz − wy − xy − wz − xz)s2

+ (wxy + wxz − wyz − xyz)s + wxyz.

The coefficients of s3, s2, and s are all positive, and wxyz > 0 because w, x, y, z > 0.
Therefore, p(s) > 0 for all s > 0. However, p(w) = 0 and w > 0, contradiction. Therefore,
all three inequalities cannot simultaneously hold.


