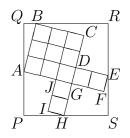


Solutions to Problem 4/3/16

www.usamts.org

4/3/16. Region ABCDEFGHIJ consists of 13 equal squares and is inscribed in rectangle PQRS with A on \overline{PQ} , B on \overline{QR} , E on \overline{RS} , and H on \overline{SP} , as shown in the figure on the right. Given that PQ = 28 and QR = 26, determine, with proof, the area of region ABCDEFGHIJ.

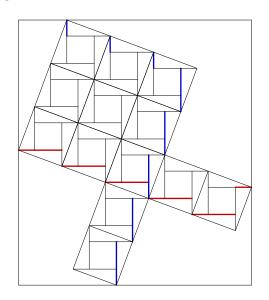


Credit This problem was inspired by Problem 2 of the First Round of the 2001 Japanese Mathematical Olympiad.

Comments There were many different successful approaches to solving this problem. The most aesthetically pleasing comes from Zachary Abel (11/TX). Others took a similar approach, using projection without Zachary's clever dissection. Noah Cohen gives an example of this approach. Nicholas Zehender shows that a subset of the figure formed by the little squares could itself be inscribed in a square and used this fact to solve the problem. Finally, Michael John Griffin gives us another dissection to solve the problem.

Solution 1 by: Zachary Abel (11/TX)

Inside each square in the diagram, draw two horizontal segments and two vertical segments as shown to the right. Let the two indicated lengths be a and b. The whole diagram looks like this:



The total horizontal length of the red segments is 5a + b, which is equal to the width of the rectangle, i.e. 5a + b = 26. Likewise, the total vertical length of the blue segments is

Solutions to Problem 4/3/16

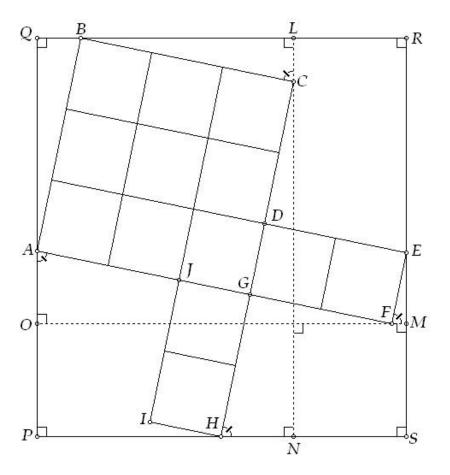
www.usamts.org

5a + 3b, which is equal to the height of the rectangle, 28. So we have the system

$$\begin{cases} 5a+b = 26\\ 5a+3b = 28 \end{cases},$$

whose solution is a = 5 and b = 1. So the side length of each square is $\sqrt{a^2 + b^2} = \sqrt{26}$, the area of each square is 26, and the total area of *ABCDEFGHIJ* is $26 \times 13 = 338$.

Solution 2 by: Noah Cohen (11/ME)



Via angle chasing, it can be seen that $\angle BCL \equiv \angle GHN \equiv \angle OAJ \equiv \angle EFM$, call this angle ϑ , and call the length of one square x

Solutions to Problem 4/3/16

www.usamts.org

We can now represent the height and and width of the rectangle with the following equations

$$5x \sin \vartheta + x \cos \vartheta = 26$$

$$5x \sin \vartheta + 3x \cos \vartheta = 28$$

$$x \cos \vartheta = 1$$

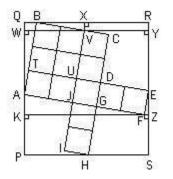
$$x \sin \vartheta = 5$$

$$(x \sin \vartheta)^2 + (x \cos \vartheta)^2 = x^2$$

$$x = \sqrt{26}$$

The area of the polygon ABCDEFGHIJ can be represented by $13x^2$, or $(13)(\sqrt{26})^2$, which is equal to 338.

Solution 3 by: Nicholas Zehender (11/VA)



Draw a line parallel to QR through point V. CDEFGHIJATUV is the same if you rotate it 90 degrees, so YS = WY = QR = 26. RY = RS - YS = 28 - 26 = 2, so XV = 2. $AFK \sim VBX$ because $AF \parallel VB$, $FK \parallel BX$, and $KA \parallel XV$. $\angle EFZ = 180 - 90 - \angle AFK = 90 - \angle AFK = \angle FAK$, and $\angle EZF = \angle FKA = 90$, so FEZ is also similar to AFK and VBX.

ZF/XV = EF/BV ZF/2 = 1/2 ZF = 1 FK = ZK - ZF = 26 - 1 = 25 KA/XV = AF/BV KA/2 = 5/2KA = 5

Solutions to Problem 4/3/16

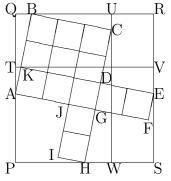
www.usamts.org

 $AF = \sqrt{FK^2 + KA^2}$ $AF = \sqrt{625 + 25}$ $AF = \sqrt{650}$

The side of one of the squares is $AF/5 = \sqrt{26}$, so the area of ABCDEFGHIJ is $13(\sqrt{26})^2 = 338$.

Solution 4 by: Michael John Griffin (12/UT)

Let Point K be the point one third of the way between points A and B so that it is also in line with point E. Also, let points T, U, V, and W be points along lines \overline{PQ} , \overline{QR} , \overline{RS} , and \overline{SP} respectively, such that line \overline{TV} is perpendicular to line \overline{PQ} and passes through point K, and line \overline{UW} is perpendicular to line \overline{QR} and passes through point C, as shown in the figure at right.



Triangles ΔABQ , ΔBCU , ΔAKT , ΔKEV , and ΔCHW are all similar, with $\Delta ABQ \cong \Delta BCU$ and $\Delta KEV \cong \Delta CHW$. All of these triangles have one right angle and the other corresponding angles equal. If two given angles (such as $\angle ABQ$ and $\angle CBU$) and a right angle are all collinear, the two angles are complimentary. In the case of ΔAKT and ΔABQ , Euclid's Coresponding Angles postulate works well.

 $\overline{KV} = \overline{CW}, \ \overline{UC} = \overline{QB}, \ \text{and} \ \overline{TK} = 1/3\overline{QB}$ (given the ratio of the hypotenuses similar triangles). Notice that $\overline{UC} + \overline{CW} = 28$ and $\overline{TK} + \overline{KV} = 26$.

$$\overline{UC} + \overline{CW} = \overline{TK} + \overline{KV} + 2$$
$$\overline{QB} + \overline{CW} = \frac{\overline{QB}}{3} + \overline{CW} + 2$$
$$\frac{2 * \overline{QB}}{3} = 2$$
$$\overline{QB} = 3$$

Since $\overline{UC} = \overline{QB}$ and $\overline{UC} + \overline{CW} = 28$, $\overline{CW} = 25$. $\overline{CW} = \frac{5*\overline{AQ}}{3}$, so $\overline{AQ} = 15$. $\overline{AQ}^2 + \overline{QB}^2 = \overline{AB}^2$, so $\overline{AB}^2 = 15^2 + 3^2 = 225 + 9 = 234$. \overline{AB}^2 just happens to be the area of 9 of the 13 squares, so the total area of all the squares is $13/9 * 234 = 338 \text{ units}^2$