

Solutions to Problem 4/1/19 www.usamts.org

4/1/19. In convex quadrilateral ABCD, AB = CD, $\angle ABC = 77^{\circ}$, and $\angle BCD = 150^{\circ}$. Let P be the intersection of the perpendicular bisectors of \overline{BC} and \overline{AD} . Find $\angle BPC$.

Credit This problem was proposed by Naoki Sato.

Comments Since *P* lies on the perpendicular bisector of BC, PB = PC. This and similar observations lead to the construction of congruent triangles which determine $\angle BPC$. In addition, the solution below rigorously establishes the location of point *P*. Solutions edited by Naoki Sato.

Solution 1 by: Carl Lian (9/MA)



Note that there are three distinct cases for the position of P: Either outside quadrilateral ABCD on the side of BC, that is, PM < PN; outside quadrilateral ABCD on the side of AD, that is, PN < PM; or inside quadrilateral ABCD. We first deal with the first case, and then prove that the second and third cases are impossible.

Let M be the midpoint of BC and N the midpoint of AD. We have BM = MC and AN = ND, and $\angle BMP = \angle CMP = \angle ANP = \angle DNP = 90^{\circ}$, so $\triangle BMP \cong \triangle CMP$ and $\triangle ANP \cong \triangle DNP$. From these congruences, BP = CP and AP = DP, and we are given that AB = CD. Therefore, $\triangle ABP \cong \triangle DCP$, and $\angle ABP = \angle DCP$.

Let $\theta = \angle CBP$. Then $\angle DCP = \angle ABP = 77^{\circ} + \theta$, and $\angle BCP = \theta$. Now, by the angles around C, we have $\angle DCB + \angle BCP + \angle PCD = 150^{\circ} + \theta + 77^{\circ} + \theta = 360^{\circ}$, so $2\theta = 133^{\circ}$. Hence, $\angle BPC = 2\angle BPM = 2(90^{\circ} - \theta) = 180^{\circ} - 2\theta = 47^{\circ}$.

USA Mathematical Talent Search

Solutions to Problem 4/1/19 www.usamts.org

For the second case, assume by way of contradiction that P lies outside quadrilateral ABCD, on the side of AD. Again, $\triangle ABP \cong \triangle DCP$. We have $\angle PBA = \angle PCD$, and also $\angle PBM = \angle PCM$ from $\triangle PBM \cong \triangle PCM$. Adding these gives $\angle PBA + \angle PMB = \angle PCD + \angle PCM$, and thus $\angle ABC = \angle BCD$, but this is a contradiction because $\angle ABC = 77^{\circ}$, and $\angle BCD = 150^{\circ}$, so P cannot lie outside quadrilateral ABCD on the side of AD.

For the third case, assume by way of contradiction that P lies inside quadrilateral ABCD. Again, $\triangle ABP \cong \triangle DCP$. We have $\angle PBA = \angle PCD$, and also $\angle PBM = \angle PCM$ from $\triangle PBM \cong \triangle PCM$. Adding these gives $\angle PBA + \angle PMB = \angle PCD + \angle PCM$, and thus $\angle ABC = \angle BCD$, but this is a contradiction because $\angle ABC = 77^{\circ}$ and $\angle DBC = 150^{\circ}$, so P cannot lie inside quadrilateral ABCD.

Therefore, the first case is the only possible case, and our assertion that $\angle BPC = 47^{\circ}$ still holds.