

3/4/19. Let $0 < \mu < 1$. Define a sequence $\{a_n\}$ of real numbers by $a_1 = 1$ and for all integers $k \ge 1$,

$$a_{2k} = \mu a_k,$$

 $a_{2k+1} = (1-\mu)a_k$

Find the value of the sum $\sum_{k=1}^{\infty} a_{2k} a_{2k+1}$ in terms of μ .

Credit This problem was proposed by Sandor Lehoczky, and modified by Dave Patrick.

Comments This following solution deftly finds the required sum by directly using the given recursion relations. *Solutions edited by Naoki Sato.*

Solution by: Tony Jin (10/CA)

By the definition of $\{a_n\}$,

$$\sum_{k=1}^{\infty} a_{2k} a_{2k+1} = \sum_{k=1}^{\infty} [\mu a_k \cdot (1-\mu)a_k] = \mu(1-\mu) \sum_{k=1}^{\infty} a_k^2.$$

We can split up the sum $\sum_{k=1}^{\infty} a_k^2$ as follows:

$$\begin{split} \sum_{k=1}^{\infty} a_k^2 &= a_1^2 + \sum_{k=1}^{\infty} a_{2k}^2 + \sum_{k=1}^{\infty} a_{2k+1}^2 \\ &= a_1^2 + \sum_{k=1}^{\infty} \mu^2 a_k^2 + \sum_{k=1}^{\infty} (1-\mu)^2 a_k^2 \\ &= a_1^2 + \mu^2 \sum_{k=1}^{\infty} a_k^2 + (1-\mu)^2 \sum_{k=1}^{\infty} a_k^2 \\ &= a_1^2 + [\mu^2 + (1-\mu)^2] \sum_{k=1}^{\infty} a_k^2. \end{split}$$

Therefore,

$$[1 - \mu^2 - (1 - \mu)^2] \sum_{k=1}^{\infty} a_k^2 = a_1^2,$$

 \mathbf{SO}

$$\sum_{k=1}^{\infty} a_k^2 = \frac{a_1^2}{1 - \mu^2 - (1 - \mu)^2} = \frac{1}{2\mu(1 - \mu)}.$$

USA Mathematical Talent Search Solutions to Problem 3/4/19 www.usamts.org

Finally, the sum we seek is

$$\sum_{k=1}^{\infty} a_{2k} a_{2k+1} = \mu(1-\mu) \sum_{k=1}^{\infty} a_k^2 = \frac{1}{2}.$$