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2/4/19. Determine, with proof, the greatest integer n such that⌊n
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where bxc is the greatest integer less than or equal to x.

Credit This problem was proposed by Andy Niedermaier.

Comments In an intuitive (but not rigorous) sense, n should leave the maximum remainder
when divided by 2, 3, 11, and 13, i.e. n should leave a remainder of 12 when divided by
13, and so on. The following proof rigorously establishes the answer by finding a bound in
terms of these remainders. Solutions edited by Naoki Sato.

Solution by: Wenyu Cao (9/NJ)

We claim that the greatest integer that satisfies the given inequality is 1715. First, we
check that n = 1715 satisfies the given inequality:⌊
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= 857 + 571 + 155 + 131 = 1714 < 1715.

Next, we claim that ⌊x
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k

for all positive integers x and k. By the Division Algorithm, there exist integers q and r
such that x = qk + r and 0 ≤ r ≤ k − 1. Then⌊x
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since 0 ≤ r/k < 1, and
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as desired.

Now, let n be a positive integer that satisfies the given inequality:⌊n
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Since both sides of the inequality are integers,⌊n
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Therefore, from the result above,
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Then
n

858
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,

so n ≤ 1715. Since we have shown that n = 1715 works, we are done.


