
Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Solutions to Problem 2/4/17

www.usamts.org

2/4/17. Centered hexagonal numbers are the numbers of dots used to create hexagonal
arrays of dots. The first four centered hexagonal numbers are 1, 7, 19, and 37, as shown
below.
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Centered Hexagonal Numbers

Consider an arithmetic sequence 1, a, b and a geometric sequence 1, c, d, where a, b, c,
and d are all positive integers and a+ b = c+d. Prove that each centered hexagonal number
is a possible value of a, and prove that each possible value of a is a centered hexagonal
number.

Credit This problem was proposed by Richard Rusczyk and Erin Schram.

Comments This problem requires some algebra to find the nth centered hexagonal number,
and then a little number theory to show the equivalence. Solutions edited by Naoki Sato.

Solution 1 by: Mike Nasti (11/IL)

We want to find an explicit formula for the nth centered hexagonal number. Partitioning
the dots as above, we see immediately that the nth centered hexagonal number is 1 more
than 6 times the (n − 1)th triangular number. Thus, the nth centered hexagonal number is

1 + 6 · (n−1)(n)
2

= 3n2 − 3n + 1.

The arithmetic sequence 1, a, b has common difference a− 1, so it can be written in one
variable as 1, a, 2a−1, so b = 2a−1. The geometric sequence 1, c, d has common ratio c, so
it too can be written in one variable as 1, c, c2, so d = c2. Then a+ b = c+d ⇒ a+2a−1 =
c + c2 ⇒ 3a− 1 = c(c + 1).

Let c = 3n−2 for some integer n. Then c is an integer, so we know 3a−1 = (3n−2)(3n−
2+1) = 9n2−9n+2 = 3(3n2−3n+1)−1. Thus, whenever c = 3n−2, a = 3n2−3n+1 which
is the nth centered hexagonal number. So each centered hexagonal number is a possible value
of a.
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Now, if c(c+1) = 3a−1 for an integer a, we can say c(c+1) ≡ −1 ≡ 2 (mod 3). Then we
know that c ≡ 1 (mod 3) because if c ≡ 0 (mod 3), then c(c + 1) ≡ 0 (mod 3), and if c ≡ 2
(mod 3), then c(c+1) ≡ 0 (mod 3). Since c ≡ 1 ≡ −2 (mod 3), every possible value of c can
be written in the form 3n − 2 for some integer n. Therefore the set of possible values of a
is equal to the set of centered hexagonal numbers, so every possible value of a is a centered
hexagonal number.


