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2/2/16. Call a number a − b
√

2 with a and b both positive integers tiny if it is closer to
zero than any number c− d

√
2 such that c and d are positive integers with c < a and d < b.

Three numbers which are tiny are 1−
√

2, 3−2
√

2, and 7−5
√

2. Without using a calculator
or computer, prove whether or not each of the following is tiny:

(a) 58− 41
√

2 , (b) 99− 70
√

2 .

Credit We are indebted to Dr. David Grabiner of the NSA for this problem. David is a
former multiple winner of the USAMO, whose continued support of the USAMTS is most
appreciated.

Comments Solution 1 shows the most straightforward solution. Solution 2 uses the shape
of the graph of y =

√
x. Solution 3 uses the continued fraction representation of

√
2. Other

solutions are possible, including listing (by hand!) all of the smallest numbers of the form
|a− b

√
2| for each positive integer a up through 100.

Solution 1 by: Tony Liu (10/IL)

(a) We claim that 58− 41
√

2 is not tiny. Indeed, from 1 <
√

2, we have

|58− 41
√

2| >
|58− 41

√
2|√

2

= |29
√

2− 41|
= |41− 29

√
2|

Thus 41− 29
√

2 is closer to zero than 58− 41
√

2. Since 41 < 58, and 29 < 41, we conclude
that 58− 41

√
2 is not tiny.

(b) We claim that 99−70
√

2 is tiny. Assume, for the sake of contradiction, that there exists a
number c−d

√
2 closer to zero, with c < 99, and d < 70. Since 992−2·702 = 9801−9800 = 1,

we have

1 = |(99− 70
√

2)(99 + 70
√

2)|
> |(c− d

√
2)(99 + 70

√
2)|

> |(c− d
√

2)(c + d
√

2)|
= |c2 − 2d2|
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Because c and d are positive integers, this implies that c2 − 2d2 = 0, or c = d
√

2, which is
impossible. It follows that 99− 70

√
2 is indeed tiny.

Solution 2 by: Johnny Hu (10/AL)

The three examples for tiny numbers are all in the form,
√

x + 1−
√

x or
√

x−
√

x + 1,
where x is an integer. Since the graph for

√
x is half a parabola that opens to the positive

side that rises more and more slowly as x increases, the difference between
√

x + 1 and
√

x
becomes smaller and smaller as x increases. Since x + 1 and x are consecutive integers and
the difference between

√
x + 1 and

√
x becomes smaller as x increases, numbers in the form

of
√

x + 1 −
√

x and
√

x −
√

x + 1 must be tiny because all values smaller than x will not
produce a number closer to zero.

Since 58 − 41
√

2 can be written as
√

3364 −
√

3362, it is in the form of
√

x + 2 −
√

x. The
graph of

√
x + 2−

√
x is above the graph of

√
x + 1−

√
x so 58− 41

√
2 is not a tiny number

as there exists a number in the form of c − d
√

2, where c < 58 and d < 41, which is closer
to zero.
To verify this, we must find a number in the form of

√
y + 1 − √

y or
√

y −
√

y + 1, since
these will most likely to be smaller than

√
x + 2−

√
x (This will be proven later in the page).

a− b
√

2 = 58− 41
√

2

58− 41
√

2 = a− b
√

2

=
√

a2 −
√

2b2

Also:

a2 = 2b2 + 2

= 2(b2 + 1)

To make this equation into the form of
√

y −
√

y + 1:
Let:

(d)(
√

2) = a

Then:
2d2 = 2(b2 + 1)

d2 = b2 + 1

b2 = y

d2 = y + 1
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Therefore,
√

y −
√

y + 1 =
√

b2 −
√

d2

Substituting our original value, we have
√

1681−
√

1682 = 41− 29
√

2.
To verify that 41− 29

√
2 is closer to zero than 58− 41

√
2:

|41− 29
√

2| < |58− 41
√

2|

|41− 29
√

2|2 < |58− 41
√

2|2

3363− 2378
√

2 < 6726− 4756
√

2

Since 2(3363− 2378
√

2) = 6726− 4756
√

2, |41− 29
√

2| < |58− 41
√

2| and 58− 41
√

2 is not
a tiny number.

Since 99−70
√

2 can be written as
√

9801−
√

9800, it is in the form of
√

x + 1−
√

x. Numbers
in this form are always tiny numbers, so 99− 70

√
2 is a tiny number.

Solution 3 by: Zachary Abel (11/TX)

This problem follows from a (well known?) theorem concerning the approximation ability
of continued fractions.

Theorem. For a given irrational number α, the number p − qα is tiny if and only if p/q is
a convergent of α.

The proof is in two parts.

Lemma 1. If pn/qn is a convergent for the irrational number α and p/q 6= pn/qn is an
arbitrary fraction with 0 < q < qn+1, then

|pn − qnα| < |p − qα|.

Proof. The key to this proof is to try to write

(pn − qnα)x + (pn+1 − qn+1α)y = p − qα

by solving the system {
qnx + qn+1y = q
pnx + pn+1y = p

(1)

for x and y. Using the fact that pn+1qn − pnqn+1 = (−1)n, we find from the above system
that

x = (−1)n
(
qpn+1 − pqn+1

)
and y = (−1)n

(
pqn − qpn

)
This tells us a lot! First of all, both x and y are integers. Next, neither x nor y is 0. Indeed,

if x = 0 then p/q = pn+1/qn+1, which is impossible for q < qn+1 since gcd(pn+1, qn+1) = 1,
and if y = 0 then p/q = pn/qn, which was assumed to be false.
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We can obtain even more information from the sytem in (1): x and y must have opposite
sign. If both were positive, then q = qnx + qn+1y > qn+1, and if both were negative, then q
would be negative.

Now we’re ready for the final step. Since α lies between pn/qn and pn+1/qn+1, the numbers
pn − qnα and pn+1 − qn+1α have opposite signs. Since x and y also have opposite signs, the
two numbers (pn − qnα)x and (pn+1 − qn+1α)y have the same sign. Thus,

(pn − qnα)x + (pn+1 − qn+1α)y = p − qα∣∣(pn − qnα)x + (pn+1 − qn+1α)y
∣∣ =

∣∣p − qα
∣∣∣∣(pn − qnα)x

∣∣ +
∣∣(pn+1 − qn+1α)y

∣∣ =
∣∣p − qα

∣∣∣∣pn − qnα
∣∣ · ∣∣x∣∣ <

∣∣p − qα
∣∣∣∣pn − qnα

∣∣ <
∣∣p − qα

∣∣
Notice that this lemma shows that the number pn − qnα is tiny. This next lemma shows

that there are no other tiny numbers.

Lemma 2. If p/q is not a convergent of α, then p − qα is not tiny.

Proof. Since p/q isn’t a convergent to α, we can find two successive convergents pn/qn and
pn+1/qn+1 with qn < q < qn+1. Then by the first lemma, |pn− qnα| < |p− qα|, and so p− qα
is not tiny.

These two lemmas show that pn − qnα is tiny for each n and that there are no other tiny
numbers. So the main theorem has been proven.

Because of this theorem with α =
√

2, the tiny numbers can be found by calculating the
convergents of

√
2. The continued fraction representation of

√
2 is

√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·

Using the recurrence relations

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2
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and the fact that an = 2 for n ≥ 1, we can easily calculate the convergents. We get

p0

q0

=
1

1

p1

q1

=
3

2

p2

q2

=
7

5

p3

q3

=
17

12
p4

q4

=
41

29

p5

q5

=
99

70

p6

q6

=
239

169

p7

q7

=
577

408

Since 99/70 is one of the convergents, 99 − 70
√

2 is a tiny number, whereas 58/41 is not a
convergent and so 58− 41

√
2 is not tiny.


