

2/2/16. Call a number $a - b\sqrt{2}$ with a and b both positive integers *tiny* if it is closer to zero than any number $c - d\sqrt{2}$ such that c and d are positive integers with c < a and d < b. Three numbers which are tiny are $1 - \sqrt{2}$, $3 - 2\sqrt{2}$, and $7 - 5\sqrt{2}$. Without using a calculator or computer, prove whether or not each of the following is tiny:

(a)
$$58 - 41\sqrt{2}$$
, (b) $99 - 70\sqrt{2}$.

Credit We are indebted to Dr. David Grabiner of the NSA for this problem. David is a former multiple winner of the USAMO, whose continued support of the USAMTS is most appreciated.

Comments Solution 1 shows the most straightforward solution. Solution 2 uses the shape of the graph of $y = \sqrt{x}$. Solution 3 uses the continued fraction representation of $\sqrt{2}$. Other solutions are possible, including listing (by hand!) all of the smallest numbers of the form $|a - b\sqrt{2}|$ for each positive integer a up through 100.

Solution 1 by: Tony Liu (10/IL)

(a) We claim that $58 - 41\sqrt{2}$ is not tiny. Indeed, from $1 < \sqrt{2}$, we have

$$|58 - 41\sqrt{2}| > \frac{|58 - 41\sqrt{2}|}{\sqrt{2}} \\ = |29\sqrt{2} - 41| \\ = |41 - 29\sqrt{2}|$$

Thus $41 - 29\sqrt{2}$ is closer to zero than $58 - 41\sqrt{2}$. Since 41 < 58, and 29 < 41, we conclude that $58 - 41\sqrt{2}$ is not tiny.

(b) We claim that $99-70\sqrt{2}$ is tiny. Assume, for the sake of contradiction, that there exists a number $c - d\sqrt{2}$ closer to zero, with c < 99, and d < 70. Since $99^2 - 2 \cdot 70^2 = 9801 - 9800 = 1$, we have

$$1 = |(99 - 70\sqrt{2})(99 + 70\sqrt{2})|$$

> $|(c - d\sqrt{2})(99 + 70\sqrt{2})|$
> $|(c - d\sqrt{2})(c + d\sqrt{2})|$
= $|c^2 - 2d^2|$

Solutions to Problem 2/2/16 www.usamts.org

Because c and d are positive integers, this implies that $c^2 - 2d^2 = 0$, or $c = d\sqrt{2}$, which is impossible. It follows that $99 - 70\sqrt{2}$ is indeed tiny.

Solution 2 by: Johnny Hu (10/AL)

The three examples for *tiny* numbers are all in the form, $\sqrt{x+1} - \sqrt{x}$ or $\sqrt{x} - \sqrt{x+1}$, where x is an integer. Since the graph for \sqrt{x} is half a parabola that opens to the positive side that rises more and more slowly as x increases, the difference between $\sqrt{x+1}$ and \sqrt{x} becomes smaller and smaller as x increases. Since x+1 and x are consecutive integers and the difference between $\sqrt{x+1}$ and \sqrt{x} becomes smaller as x increases, numbers in the form of $\sqrt{x+1} - \sqrt{x}$ and $\sqrt{x} - \sqrt{x+1}$ must be *tiny* because all values smaller than x will not produce a number closer to zero.

Since $58 - 41\sqrt{2}$ can be written as $\sqrt{3364} - \sqrt{3362}$, it is in the form of $\sqrt{x+2} - \sqrt{x}$. The graph of $\sqrt{x+2} - \sqrt{x}$ is above the graph of $\sqrt{x+1} - \sqrt{x}$ so $58 - 41\sqrt{2}$ is not a tiny number as there exists a number in the form of $c - d\sqrt{2}$, where c < 58 and d < 41, which is closer to zero.

To verify this, we must find a number in the form of $\sqrt{y+1} - \sqrt{y}$ or $\sqrt{y} - \sqrt{y+1}$, since these will most likely to be smaller than $\sqrt{x+2} - \sqrt{x}$ (This will be proven later in the page). $a - b\sqrt{2} = 58 - 41\sqrt{2}$

$$58 - 41\sqrt{2} = a - b\sqrt{2} = \sqrt{a^2} - \sqrt{2b^2}$$

Also:

$$a^2 = 2b^2 + 2$$

= 2(b^2 + 1)

To make this equation into the form of $\sqrt{y} - \sqrt{y+1}$: Let:

$$(d)(\sqrt{2}) = a$$

Then:

$$2d^{2} = 2(b^{2} + 1)$$
$$d^{2} = b^{2} + 1$$
$$b^{2} = y$$
$$d^{2} = y + 1$$

USA Mathematical Talent Search

Solutions to Problem 2/2/16

www.usamts.org

Therefore, $\sqrt{y} - \sqrt{y+1} = \sqrt{b^2} - \sqrt{d^2}$ Substituting our original value, we have $\sqrt{1681} - \sqrt{1682} = 41 - 29\sqrt{2}$. To verify that $41 - 29\sqrt{2}$ is closer to zero than $58 - 41\sqrt{2}$:

$$|41 - 29\sqrt{2}| < |58 - 41\sqrt{2}|$$
$$|41 - 29\sqrt{2}|^2 < |58 - 41\sqrt{2}|^2$$
$$3363 - 2378\sqrt{2} < 6726 - 4756\sqrt{2}$$

Since $2(3363 - 2378\sqrt{2}) = 6726 - 4756\sqrt{2}$, $|41 - 29\sqrt{2}| < |58 - 41\sqrt{2}|$ and $58 - 41\sqrt{2}$ is not a *tiny* number.

Since $99-70\sqrt{2}$ can be written as $\sqrt{9801}-\sqrt{9800}$, it is in the form of $\sqrt{x+1}-\sqrt{x}$. Numbers in this form are always *tiny* numbers, so $99-70\sqrt{2}$ is a *tiny* number.

Solution 3 by: Zachary Abel (11/TX)

This problem follows from a (well known?) theorem concerning the approximation ability of continued fractions.

Theorem. For a given irrational number α , the number $p - q\alpha$ is tiny if and only if p/q is a convergent of α .

The proof is in two parts.

Lemma 1. If p_n/q_n is a convergent for the irrational number α and $p/q \neq p_n/q_n$ is an arbitrary fraction with $0 < q < q_{n+1}$, then

$$|p_n - q_n \alpha| < |p - q\alpha|.$$

Proof. The key to this proof is to try to write

$$(p_n - q_n\alpha)x + (p_{n+1} - q_{n+1}\alpha)y = p - q\alpha$$

by solving the system

$$\begin{cases} q_n x + q_{n+1} y &= q \\ p_n x + p_{n+1} y &= p \end{cases}$$
(1)

for x and y. Using the fact that $p_{n+1}q_n - p_nq_{n+1} = (-1)^n$, we find from the above system that

$$x = (-1)^n (qp_{n+1} - pq_{n+1})$$
 and $y = (-1)^n (pq_n - qp_n)$

This tells us a lot! First of all, both x and y are integers. Next, neither x nor y is 0. Indeed, if x = 0 then $p/q = p_{n+1}/q_{n+1}$, which is impossible for $q < q_{n+1}$ since $gcd(p_{n+1}, q_{n+1}) = 1$, and if y = 0 then $p/q = p_n/q_n$, which was assumed to be false.

USA Mathematical Talent Search

Solutions to Problem 2/2/16 www.usamts.org

We can obtain even more information from the system in (1): x and y must have opposite sign. If both were positive, then $q = q_n x + q_{n+1}y > q_{n+1}$, and if both were negative, then qwould be negative.

Now we're ready for the final step. Since α lies between p_n/q_n and p_{n+1}/q_{n+1} , the numbers $p_n - q_n \alpha$ and $p_{n+1} - q_{n+1} \alpha$ have opposite signs. Since x and y also have opposite signs, the two numbers $(p_n - q_n \alpha)x$ and $(p_{n+1} - q_{n+1}\alpha)y$ have the same sign. Thus,

$$(p_n - q_n\alpha)x + (p_{n+1} - q_{n+1}\alpha)y = p - q\alpha$$

$$|(p_n - q_n\alpha)x + (p_{n+1} - q_{n+1}\alpha)y| = |p - q\alpha|$$

$$|(p_n - q_n\alpha)x| + |(p_{n+1} - q_{n+1}\alpha)y| = |p - q\alpha|$$

$$|p_n - q_n\alpha| \cdot |x| < |p - q\alpha|$$

$$|p_n - q_n\alpha| < |p - q\alpha|$$

Notice that this lemma shows that the number $p_n - q_n \alpha$ is *tiny*. This next lemma shows that there are no other tiny numbers.

Lemma 2. If p/q is not a convergent of α , then $p - q\alpha$ is not tiny.

Proof. Since p/q isn't a convergent to α , we can find two successive convergents p_n/q_n and p_{n+1}/q_{n+1} with $q_n < q < q_{n+1}$. Then by the first lemma, $|p_n - q_n \alpha| < |p - q\alpha|$, and so $p - q\alpha$ is not *tiny*.

These two lemmas show that $p_n - q_n \alpha$ is tiny for each n and that there are no other tiny numbers. So the main theorem has been proven.

Because of this theorem with $\alpha = \sqrt{2}$, the tiny numbers can be found by calculating the convergents of $\sqrt{2}$. The continued fraction representation of $\sqrt{2}$ is

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

Using the recurrence relations

$$p_n = a_n p_{n-1} + p_{n-2}$$

 $q_n = a_n q_{n-1} + q_{n-2}$

USA Mathematical Talent Search

Solutions to Problem 2/2/16

www.usamts.org

and the fact that $a_n = 2$ for $n \ge 1$, we can easily calculate the convergents. We get

$\frac{p_0}{q_0} = \frac{1}{1}$	$\frac{p_1}{q_1} = \frac{3}{2}$	$\frac{p_2}{q_2} = \frac{7}{5}$	$\frac{p_3}{q_3} = \frac{17}{12}$
$\frac{p_4}{q_4} = \frac{41}{29}$	$\frac{p_5}{q_5} = \frac{99}{70}$	$\frac{p_6}{q_6} = \frac{239}{169}$	$\frac{p_7}{q_7} = \frac{577}{408}$

Since 99/70 is one of the convergents, $99 - 70\sqrt{2}$ is a tiny number, whereas 58/41 is not a convergent and so $58 - 41\sqrt{2}$ is not tiny.